Codingo / backend /services /report_generator.py
husseinelsaadi's picture
indentation adjusted
6088c8f
raw
history blame
7.92 kB
"""Utilities for assembling and exporting interview reports.
This module provides two primary helpers used by the recruiter dashboard:
``generate_llm_interview_report(application)``
Given a candidate's ``Application`` record, assemble a plain‑text report
summarising the interview. Because the interview process currently
executes entirely client‑side and does not persist questions or answers
to the database, this report focuses on the information available on
the server: the candidate's profile, the job requirements and a skills
match score. Should future iterations store richer interview data
server‑side, this function can be extended to include question/answer
transcripts, per‑question scores and LLM‑generated feedback.
``create_pdf_report(report_text)``
Convert a multi‑line string into a simple PDF. The implementation
leverages Matplotlib's PDF backend (available by default) to avoid
heavyweight dependencies such as ReportLab or WeasyPrint, which are
absent from the runtime environment. Text is wrapped and split
across multiple pages as necessary.
"""
from __future__ import annotations
import json
from io import BytesIO
import textwrap
from typing import List
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
def generate_llm_interview_report(application) -> str:
"""Generate a human‑readable interview report for a candidate.
The report includes the candidate's name and email, job details,
application date, a computed skills match summary and placeholder
sections for future enhancements. If server‑side storage of
question/answer pairs is added later, this function can be updated
to incorporate those details.
Parameters
----------
application : backend.models.database.Application
The SQLAlchemy Application instance representing the candidate's
job application. Assumed to have related ``job`` and
``date_applied`` attributes available.
Returns
-------
str
A multi‑line string containing the report contents.
"""
# Defensive imports to avoid circular dependencies at import time
try:
from datetime import datetime # noqa: F401
except Exception:
pass
# Extract candidate skills and job skills
try:
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
except Exception:
candidate_features = {}
candidate_skills: List[str] = candidate_features.get('skills', []) or []
job_skills: List[str] = []
try:
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
except Exception:
job_skills = []
# Compute skills match ratio and label. Normalise to lower case for
# comparison and avoid dividing by zero when ``job_skills`` is empty.
candidate_set = {s.strip().lower() for s in candidate_skills}
job_set = {s.strip().lower() for s in job_skills}
common = candidate_set & job_set
ratio = len(common) / len(job_set) if job_set else 0.0
if ratio >= 0.75:
score_label = 'Excellent'
elif ratio >= 0.5:
score_label = 'Good'
elif ratio >= 0.25:
score_label = 'Medium'
else:
score_label = 'Poor'
# Assemble report lines
lines: List[str] = []
lines.append('Interview Report')
lines.append('=================')
lines.append('')
lines.append(f'Candidate Name: {application.name}')
lines.append(f'Candidate Email: {application.email}')
if application.job:
lines.append(f'Job Applied: {application.job.role}')
lines.append(f'Company: {application.job.company}')
else:
lines.append('Job Applied: N/A')
lines.append('Company: N/A')
# Format date_applied if available
try:
date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A'
except Exception:
date_str = 'N/A'
lines.append(f'Date Applied: {date_str}')
lines.append('')
lines.append('Skills Match Summary:')
# Represent required and candidate skills as comma‑separated lists. Use
# title‑case for presentation and handle empty lists gracefully.
formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A'
formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A'
formatted_common = ', '.join(sorted(common)) if common else 'None'
lines.append(f' Required Skills: {formatted_job_skills}')
lines.append(f' Candidate Skills: {formatted_candidate_skills}')
lines.append(f' Skills in Common: {formatted_common}')
lines.append(f' Match Ratio: {ratio * 100:.0f}%')
lines.append(f' Score: {score_label}')
lines.append('')
lines.append('Interview Transcript & Evaluation:')
try:
if application.interview_log:
try:
qa_log = json.loads(application.interview_log)
except Exception:
qa_log = []
if qa_log:
for idx, entry in enumerate(qa_log, 1):
q = entry.get("question", "N/A")
a = entry.get("answer", "N/A")
eval_score = entry.get("evaluation", {}).get("score", "N/A")
eval_feedback = entry.get("evaluation", {}).get("feedback", "N/A")
lines.append(f"\nQuestion {idx}: {q}")
lines.append(f"Answer: {a}")
lines.append(f"Score: {eval_score}")
lines.append(f"Feedback: {eval_feedback}")
else:
lines.append("No interview log data recorded.")
else:
lines.append("No interview log data recorded.")
except Exception as e:
lines.append(f"Error loading interview log: {e}")
return '\n'.join(lines)
def create_pdf_report(report_text: str) -> BytesIO:
"""Convert a formatted report into a visually clear PDF with bold Qs and indented As."""
buffer = BytesIO()
# Prepare wrapped lines
raw_lines = report_text.split("\n")
wrapper = textwrap.TextWrapper(width=85, break_long_words=True, replace_whitespace=False)
formatted_lines: List[str] = []
for line in raw_lines:
# Highlight Questions
if line.strip().startswith("Question"):
formatted_lines.append("") # Extra spacing before new question
formatted_lines.append(f"**{line.strip()}**") # Bold style marker
elif line.strip().startswith("Answer:"):
# Indent answers for clarity
answer_text = line.replace("Answer:", "").strip()
wrapped_answer = wrapper.wrap(answer_text)
formatted_lines.append(f" Answer: {wrapped_answer[0]}")
for extra in wrapped_answer[1:]:
formatted_lines.append(f" {extra}")
elif line.strip().startswith("Score:") or line.strip().startswith("Feedback:"):
# Keep score & feedback on separate lines
formatted_lines.append(f" {line.strip()}")
else:
# Wrap other lines normally
wrapped = wrapper.wrap(line)
formatted_lines.extend(wrapped if wrapped else [""])
# PDF creation
lines_per_page = 38
with PdfPages(buffer) as pdf:
for i in range(0, len(formatted_lines), lines_per_page):
fig = plt.figure(figsize=(8.27, 11.69)) # A4
fig.patch.set_facecolor('white')
page_text = "\n".join(formatted_lines[i:i + lines_per_page])
fig.text(0.1, 0.95, page_text, va="top", ha="left", fontsize=10, family="monospace")
pdf.savefig(fig)
plt.close(fig)
buffer.seek(0)
return buffer
__all__ = ['generate_llm_interview_report', 'create_pdf_report']