Codingo / backend /services /resume_parser.py
husseinelsaadi's picture
updated
1ead253
raw
history blame
4.52 kB
from __future__ import annotations
import os
import re
import subprocess
import zipfile
import json
import torch
from typing import List
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
# --- UPDATED: Using Deepseek-Coder-V2-Lite-Instruct for better performance ---
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/Deepseek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/Deepseek-Coder-V2-Lite-Instruct",
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# ===============================
# Text Extraction (PDF/DOCX)
# ===============================
def extract_text(file_path: str) -> str:
"""Extract text from PDF or DOCX resumes."""
if not file_path or not os.path.isfile(file_path):
return ""
lower_name = file_path.lower()
try:
if lower_name.endswith('.pdf'):
result = subprocess.run(
['pdftotext', '-layout', file_path, '-'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
check=False
)
return result.stdout.decode('utf-8', errors='ignore')
elif lower_name.endswith('.docx'):
with zipfile.ZipFile(file_path) as zf:
with zf.open('word/document.xml') as docx_xml:
xml_bytes = docx_xml.read()
xml_text = xml_bytes.decode('utf-8', errors='ignore')
xml_text = re.sub(r'<w:p[^>]*>', '\n', xml_text, flags=re.I)
text = re.sub(r'<[^>]+>', ' ', xml_text)
return re.sub(r'\s+', ' ', text)
else:
return ""
except Exception:
return ""
# ===============================
# Name Extraction (Fallback)
# ===============================
def extract_name(text: str, filename: str) -> str:
"""Extract candidate's name from resume text or filename."""
if text:
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
for line in lines[:10]:
if re.match(r'(?i)resume|curriculum vitae', line):
continue
words = line.split()
if 1 < len(words) <= 4:
if all(re.match(r'^[A-ZÀ-ÖØ-Þ][\w\-]*', w) for w in words):
return line
base = os.path.basename(filename)
base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I)
base = re.sub(r'[\._-]+', ' ', base)
base = re.sub(r'(?i)\b(cv|resume)\b', '', base)
return base.title().strip()
# ===============================
# Janus-Pro Parsing
# ===============================
def parse_with_deepseek(text: str) -> dict:
"""Use Deepseek-Coder-V2-Lite-Instruct to extract resume details in JSON format."""
prompt = f"""
Extract the following information from the resume text provided below. Your response should be a valid JSON object.
Information to extract:
- Full Name: The candidate's full name.
- Email: The candidate's email address.
- Phone: The candidate's phone number.
- Skills: A list of technical and soft skills.
- Education: A list of academic degrees and institutions.
- Experience: A list of previous jobs, including company, title, and dates.
Resume Text:
{text}
Return only valid JSON in the following format:
{{
"name": "Full Name",
"email": "[email protected]",
"phone": "+961-xxx-xxx",
"skills": ["Skill1", "Skill2", "Skill3"],
"education": ["Degree1 - Institution1", "Degree2 - Institution2"],
"experience": ["Job1 - Company1 (Dates)", "Job2 - Company2 (Dates)"]
}}
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
import re, json
match = re.search(r"\{.*\}", response, re.S)
if match:
try:
return json.loads(match.group())
except:
pass
return {"name": "", "email": "", "phone": "", "skills": [], "education": [], "experience": []}