Codingo / backend /services /report_generator.py
husseinelsaadi's picture
updated
aba3be2
raw
history blame
31.9 kB
"""Utilities for assembling and exporting interview reports.
This module provides two primary helpers used by the recruiter dashboard:
``generate_llm_interview_report(application)``
Given a candidate's ``Application`` record, assemble a plain‑text report
summarising the interview. Because the interview process currently
executes entirely client‑side and does not persist questions or answers
to the database, this report focuses on the information available on
the server: the candidate's profile, the job requirements and a skills
match score. Should future iterations store richer interview data
server‑side, this function can be extended to include question/answer
transcripts, per‑question scores and LLM‑generated feedback.
``create_pdf_report(report_text)``
Convert a multi‑line string into a simple PDF. The implementation
leverages Matplotlib's PDF backend (available by default) to avoid
heavyweight dependencies such as ReportLab or WeasyPrint, which are
absent from the runtime environment. Text is wrapped and split
across multiple pages as necessary.
"""
from __future__ import annotations
import json
from io import BytesIO
import textwrap
from typing import List, Dict, Any, Tuple
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.patches as mpatches
from matplotlib.patches import Rectangle, FancyBboxPatch, Circle
import matplotlib.dates as mdates
from datetime import datetime
def generate_llm_interview_report(application) -> str:
"""Generate a human‑readable interview report for a candidate.
The report includes the candidate's name and email, job details,
application date, a computed skills match summary and placeholder
sections for future enhancements. If server‑side storage of
question/answer pairs is added later, this function can be updated
to incorporate those details.
Parameters
----------
application : backend.models.database.Application
The SQLAlchemy Application instance representing the candidate's
job application. Assumed to have related ``job`` and
``date_applied`` attributes available.
Returns
-------
str
A multi‑line string containing the report contents.
"""
# Defensive imports to avoid circular dependencies at import time
try:
from datetime import datetime # noqa: F401
except Exception:
pass
# Extract candidate skills and job skills
try:
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {}
except Exception:
candidate_features = {}
candidate_skills: List[str] = candidate_features.get('skills', []) or []
job_skills: List[str] = []
try:
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else []
except Exception:
job_skills = []
# Compute skills match ratio and label. Normalise to lower case for
# comparison and avoid dividing by zero when ``job_skills`` is empty.
candidate_set = {s.strip().lower() for s in candidate_skills}
job_set = {s.strip().lower() for s in job_skills}
common = candidate_set & job_set
ratio = len(common) / len(job_set) if job_set else 0.0
if ratio >= 0.75:
score_label = 'Excellent'
elif ratio >= 0.5:
score_label = 'Good'
elif ratio >= 0.25:
score_label = 'Medium'
else:
score_label = 'Poor'
# Assemble report lines
lines: List[str] = []
lines.append('Interview Report')
lines.append('=================')
lines.append('')
lines.append(f'Candidate Name: {application.name}')
lines.append(f'Candidate Email: {application.email}')
if application.job:
lines.append(f'Job Applied: {application.job.role}')
lines.append(f'Company: {application.job.company}')
else:
lines.append('Job Applied: N/A')
lines.append('Company: N/A')
# Format date_applied if available
try:
date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A'
except Exception:
date_str = 'N/A'
lines.append(f'Date Applied: {date_str}')
lines.append('')
lines.append('Skills Match Summary:')
# Represent required and candidate skills as comma‑separated lists. Use
# title‑case for presentation and handle empty lists gracefully.
formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A'
formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A'
formatted_common = ', '.join(sorted(common)) if common else 'None'
lines.append(f' Required Skills: {formatted_job_skills}')
lines.append(f' Candidate Skills: {formatted_candidate_skills}')
lines.append(f' Skills in Common: {formatted_common}')
lines.append(f' Match Ratio: {ratio * 100:.0f}%')
lines.append(f' Score: {score_label}')
lines.append('')
lines.append('Interview Transcript & Evaluation:')
try:
if application.interview_log:
try:
qa_log = json.loads(application.interview_log)
except Exception:
qa_log = []
if qa_log:
for idx, entry in enumerate(qa_log, 1):
q = entry.get("question", "N/A")
a = entry.get("answer", "N/A")
eval_score = entry.get("evaluation", {}).get("score", "N/A")
eval_feedback = entry.get("evaluation", {}).get("feedback", "N/A")
lines.append(f"\nQuestion {idx}: {q}")
lines.append(f"Answer: {a}")
lines.append(f"Score: {eval_score}")
lines.append(f"Feedback: {eval_feedback}")
else:
lines.append("No interview log data recorded.")
else:
lines.append("No interview log data recorded.")
except Exception as e:
lines.append(f"Error loading interview log: {e}")
return '\n'.join(lines)
def create_pdf_report(report_text: str) -> BytesIO:
"""Convert a formatted report into a clean, professional A4 PDF."""
buffer = BytesIO()
# A4 dimensions in inches (210mm x 297mm)
A4_WIDTH = 8.27
A4_HEIGHT = 11.69
# Margins in inches
LEFT_MARGIN = 0.75
RIGHT_MARGIN = 0.75
TOP_MARGIN = 1.0
BOTTOM_MARGIN = 1.0
# Calculate content area
CONTENT_WIDTH = A4_WIDTH - LEFT_MARGIN - RIGHT_MARGIN
CONTENT_HEIGHT = A4_HEIGHT - TOP_MARGIN - BOTTOM_MARGIN
# Parse report data
report_data = _parse_report_text(report_text)
# Create PDF
with PdfPages(buffer) as pdf:
# Page 1: Header and Summary
fig = plt.figure(figsize=(A4_WIDTH, A4_HEIGHT))
fig.patch.set_facecolor('white')
# Create main axis
ax = fig.add_subplot(111)
ax.set_xlim(0, A4_WIDTH)
ax.set_ylim(0, A4_HEIGHT)
ax.axis('off')
# Current Y position (start from top)
y_pos = A4_HEIGHT - TOP_MARGIN
# Professional Header with gradient-like effect
header_rect = FancyBboxPatch(
(LEFT_MARGIN, y_pos - 1.8), CONTENT_WIDTH, 1.8,
boxstyle="round,pad=0.05",
facecolor='#1e40af',
edgecolor='none'
)
ax.add_patch(header_rect)
# Company Logo placeholder (professional circle)
logo_circle = Circle((LEFT_MARGIN + 0.6, y_pos - 0.9), 0.4,
color='white', alpha=0.15, linewidth=2,
edgecolor='white')
ax.add_patch(logo_circle)
# Logo text
ax.text(LEFT_MARGIN + 0.6, y_pos - 0.9, 'IR',
fontsize=16, fontweight='bold', color='white',
horizontalalignment='center', verticalalignment='center')
# Header text
ax.text(LEFT_MARGIN + 1.4, y_pos - 0.5, 'INTERVIEW ASSESSMENT REPORT',
fontsize=18, fontweight='bold', color='white',
verticalalignment='center')
ax.text(LEFT_MARGIN + 1.4, y_pos - 0.9,
f"{report_data['job_role']}{report_data['company']}",
fontsize=11, color='white', alpha=0.9,
verticalalignment='center')
# Date
current_date = datetime.now().strftime('%B %d, %Y')
ax.text(A4_WIDTH - RIGHT_MARGIN, y_pos - 1.4, f'Generated: {current_date}',
fontsize=9, color='white', alpha=0.8,
horizontalalignment='right')
y_pos -= 2.2
# Overall Score Section (Very Prominent)
overall_score = _calculate_overall_score(report_data)
score_color = _get_score_color(overall_score['label'])
# Large score display box
score_box = FancyBboxPatch(
(LEFT_MARGIN, y_pos - 1.5), CONTENT_WIDTH, 1.5,
boxstyle="round,pad=0.08",
facecolor=score_color,
alpha=0.1,
edgecolor=score_color,
linewidth=3
)
ax.add_patch(score_box)
# Score circle indicator
score_circle = Circle((LEFT_MARGIN + 0.8, y_pos - 0.75), 0.5,
facecolor=score_color, alpha=0.2,
edgecolor=score_color, linewidth=3)
ax.add_patch(score_circle)
# Score percentage in circle
ax.text(LEFT_MARGIN + 0.8, y_pos - 0.75, f"{overall_score['percentage']:.0f}%",
fontsize=20, fontweight='bold', color=score_color,
horizontalalignment='center', verticalalignment='center')
# Score label
ax.text(LEFT_MARGIN + 1.8, y_pos - 0.4, 'OVERALL ASSESSMENT',
fontsize=10, color='#6b7280', fontweight='bold')
ax.text(LEFT_MARGIN + 1.8, y_pos - 0.8, overall_score['label'].upper(),
fontsize=24, fontweight='bold', color=score_color)
# Score description
score_desc = _get_score_description(overall_score['label'])
ax.text(LEFT_MARGIN + 1.8, y_pos - 1.1, score_desc,
fontsize=10, color='#6b7280', style='italic')
y_pos -= 2.0
# Candidate Information Section
_add_section_header(ax, LEFT_MARGIN, y_pos, 'CANDIDATE PROFILE', CONTENT_WIDTH)
y_pos -= 0.5
# Professional info grid with better spacing
info_items = [
('Full Name', report_data['candidate_name']),
('Email Address', report_data['candidate_email']),
('Applied Position', report_data['job_role']),
('Company', report_data['company']),
('Application Date', report_data['date_applied'])
]
# Create info boxes
for i, (label, value) in enumerate(info_items):
y_offset = y_pos - (i * 0.35)
# Label
ax.text(LEFT_MARGIN + 0.1, y_offset, f"{label}:",
fontsize=9, color='#6b7280', fontweight='bold')
# Value with background
value_rect = FancyBboxPatch(
(LEFT_MARGIN + 2.2, y_offset - 0.1), CONTENT_WIDTH - 2.3, 0.25,
boxstyle="round,pad=0.02",
facecolor='#f8fafc',
edgecolor='#e2e8f0',
linewidth=0.5
)
ax.add_patch(value_rect)
ax.text(LEFT_MARGIN + 2.3, y_offset, value,
fontsize=10, color='#111827', fontweight='bold')
y_pos -= 2.2
# Skills Analysis Section
_add_section_header(ax, LEFT_MARGIN, y_pos, 'SKILLS ANALYSIS', CONTENT_WIDTH)
y_pos -= 0.5
skills_data = report_data['skills_match']
# Skills match visualization with better design
bar_x = LEFT_MARGIN + 0.1
bar_y = y_pos - 0.4
bar_width = CONTENT_WIDTH - 0.2
bar_height = 0.4
# Background bar with rounded corners
bg_bar = FancyBboxPatch(
(bar_x, bar_y), bar_width, bar_height,
boxstyle="round,pad=0.02",
facecolor='#f1f5f9',
edgecolor='#cbd5e1',
linewidth=1
)
ax.add_patch(bg_bar)
# Progress bar
progress_width = max(0.3, bar_width * (skills_data['ratio'] / 100)) # Minimum visible width
progress_color = _get_score_color(skills_data['score'])
progress_bar = FancyBboxPatch(
(bar_x, bar_y), progress_width, bar_height,
boxstyle="round,pad=0.02",
facecolor=progress_color,
edgecolor='none'
)
ax.add_patch(progress_bar)
# Percentage text with better positioning
ax.text(bar_x + bar_width/2, bar_y + bar_height/2,
f"{skills_data['ratio']:.0f}% SKILLS MATCH",
fontsize=12, fontweight='bold', color='white',
horizontalalignment='center', verticalalignment='center')
y_pos -= 0.9
# Skills details with better formatting
skills_items = [
('Required Skills', skills_data['required'], '#dc2626'),
('Candidate Skills', skills_data['candidate'], '#2563eb'),
('Matching Skills', skills_data['common'], '#059669')
]
for i, (label, value, color) in enumerate(skills_items):
y_offset = y_pos - (i * 0.6)
# Color indicator
indicator = Circle((LEFT_MARGIN + 0.15, y_offset), 0.08,
facecolor=color, edgecolor='none')
ax.add_patch(indicator)
# Label
ax.text(LEFT_MARGIN + 0.35, y_offset, f"{label}:",
fontsize=10, color='#374151', fontweight='bold')
# Wrap and display skills
if value and value != 'N/A':
wrapped_value = textwrap.fill(value, width=65)
lines = wrapped_value.split('\n')
for j, line in enumerate(lines[:2]): # Max 2 lines
ax.text(LEFT_MARGIN + 0.35, y_offset - 0.25 - (j * 0.2), line,
fontsize=9, color='#6b7280')
else:
ax.text(LEFT_MARGIN + 0.35, y_offset - 0.25, 'None specified',
fontsize=9, color='#9ca3af', style='italic')
# Save first page
pdf.savefig(fig, bbox_inches='tight', pad_inches=0)
plt.close(fig)
# Page 2+: Interview Transcript
if report_data['qa_log']:
_create_transcript_pages(pdf, report_data['qa_log'], A4_WIDTH, A4_HEIGHT,
LEFT_MARGIN, RIGHT_MARGIN, TOP_MARGIN, BOTTOM_MARGIN)
buffer.seek(0)
return buffer
def _parse_report_text(report_text: str) -> Dict[str, Any]:
"""Parse the text report into structured data."""
lines = report_text.split('\n')
data = {
'candidate_name': 'N/A',
'candidate_email': 'N/A',
'job_role': 'N/A',
'company': 'N/A',
'date_applied': 'N/A',
'skills_match': {
'required': 'N/A',
'candidate': 'N/A',
'common': 'N/A',
'ratio': 0,
'score': 'N/A'
},
'qa_log': []
}
current_question = None
for line in lines:
line = line.strip()
if line.startswith('Candidate Name:'):
data['candidate_name'] = line.split(':', 1)[1].strip()
elif line.startswith('Candidate Email:'):
data['candidate_email'] = line.split(':', 1)[1].strip()
elif line.startswith('Job Applied:'):
data['job_role'] = line.split(':', 1)[1].strip()
elif line.startswith('Company:'):
data['company'] = line.split(':', 1)[1].strip()
elif line.startswith('Date Applied:'):
data['date_applied'] = line.split(':', 1)[1].strip()
elif line.startswith('Required Skills:'):
data['skills_match']['required'] = line.split(':', 1)[1].strip()
elif line.startswith('Candidate Skills:'):
data['skills_match']['candidate'] = line.split(':', 1)[1].strip()
elif line.startswith('Skills in Common:'):
data['skills_match']['common'] = line.split(':', 1)[1].strip()
elif line.startswith('Match Ratio:'):
try:
data['skills_match']['ratio'] = float(line.split(':')[1].strip().rstrip('%'))
except:
data['skills_match']['ratio'] = 0
elif line.startswith('Score:') and 'skills_match' in str(data):
data['skills_match']['score'] = line.split(':', 1)[1].strip()
elif line.startswith('Question'):
if current_question:
data['qa_log'].append(current_question)
current_question = {
'question': line.split(':', 1)[1].strip() if ':' in line else line,
'answer': '',
'score': '',
'feedback': ''
}
elif line.startswith('Answer:') and current_question:
current_question['answer'] = line.split(':', 1)[1].strip()
elif line.startswith('Score:') and current_question:
current_question['score'] = line.split(':', 1)[1].strip()
elif line.startswith('Feedback:') and current_question:
current_question['feedback'] = line.split(':', 1)[1].strip()
if current_question:
data['qa_log'].append(current_question)
return data
def _calculate_overall_score(report_data: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate overall score from skills match and QA scores."""
# Skills match contributes 40%
skills_ratio = report_data['skills_match']['ratio'] / 100
# QA scores contribute 60%
qa_scores = []
for qa in report_data['qa_log']:
score_text = qa['score'].lower()
if 'excellent' in score_text or '5' in score_text or '10' in score_text:
qa_scores.append(1.0)
elif 'good' in score_text or '4' in score_text or '8' in score_text or '9' in score_text:
qa_scores.append(0.8)
elif 'satisfactory' in score_text or 'medium' in score_text or '3' in score_text or '6' in score_text or '7' in score_text:
qa_scores.append(0.6)
elif 'needs improvement' in score_text or 'poor' in score_text or '2' in score_text or '4' in score_text or '5' in score_text:
qa_scores.append(0.4)
else:
qa_scores.append(0.2)
qa_average = sum(qa_scores) / len(qa_scores) if qa_scores else 0.5
# Calculate weighted average
overall = (skills_ratio * 0.4) + (qa_average * 0.6)
percentage = overall * 100
if overall >= 0.8:
label = 'Excellent'
elif overall >= 0.65:
label = 'Good'
elif overall >= 0.45:
label = 'Satisfactory'
else:
label = 'Needs Improvement'
return {'percentage': percentage, 'label': label}
def _get_score_color(score_label: str) -> str:
"""Get color based on score label."""
score_label = score_label.lower()
if 'excellent' in score_label:
return '#059669' # Green
elif 'good' in score_label:
return '#2563eb' # Blue
elif 'medium' in score_label or 'satisfactory' in score_label:
return '#d97706' # Orange
else:
return '#dc2626' # Red
def _get_score_description(score_label: str) -> str:
"""Get description based on score label."""
descriptions = {
'Excellent': 'Outstanding candidate with strong alignment',
'Good': 'Solid candidate with good potential',
'Satisfactory': 'Adequate candidate with room for growth',
'Needs Improvement': 'Candidate requires significant development'
}
return descriptions.get(score_label, 'Assessment completed')
def _add_section_header(ax, x: float, y: float, title: str, width: float):
"""Add a professional section header with separator line."""
# Background for header
header_bg = FancyBboxPatch(
(x - 0.05, y - 0.05), width + 0.1, 0.35,
boxstyle="round,pad=0.02",
facecolor='#f8fafc',
edgecolor='#e2e8f0',
linewidth=1
)
ax.add_patch(header_bg)
# Title
ax.text(x + 0.1, y + 0.1, title, fontsize=12, fontweight='bold', color='#1e293b')
# Decorative line
line = plt.Line2D([x + 0.1, x + width - 0.1], [y - 0.15, y - 0.15],
color='#3b82f6', linewidth=2)
ax.add_line(line)
def _create_transcript_pages(pdf, qa_log: List[Dict], page_width: float, page_height: float,
left_margin: float, right_margin: float,
top_margin: float, bottom_margin: float):
"""Create professional pages for interview transcript."""
content_width = page_width - left_margin - right_margin
wrapper = textwrap.TextWrapper(width=75)
# Group questions for pagination
questions_per_page = 2 # Reduced for better spacing
total_pages = (len(qa_log) + questions_per_page - 1) // questions_per_page
for page_num in range(total_pages):
fig = plt.figure(figsize=(page_width, page_height))
fig.patch.set_facecolor('white')
ax = fig.add_subplot(111)
ax.set_xlim(0, page_width)
ax.set_ylim(0, page_height)
ax.axis('off')
# Page header
y_pos = page_height - top_margin
# Header background
header_rect = FancyBboxPatch(
(left_margin, y_pos - 0.6), content_width, 0.6,
boxstyle="round,pad=0.02",
facecolor='#1e40af',
edgecolor='none'
)
ax.add_patch(header_rect)
ax.text(left_margin + 0.2, y_pos - 0.3, 'INTERVIEW TRANSCRIPT',
fontsize=14, fontweight='bold', color='white')
# Page number
ax.text(page_width - right_margin - 0.2, y_pos - 0.3, f'Page {page_num + 2}',
fontsize=10, color='white', horizontalalignment='right')
y_pos -= 1.0
# Questions for this page
start_idx = page_num * questions_per_page
end_idx = min(start_idx + questions_per_page, len(qa_log))
for i in range(start_idx, end_idx):
qa = qa_log[i]
# Question section
q_box = FancyBboxPatch(
(left_margin, y_pos - 1.0), content_width, 1.0,
boxstyle="round,pad=0.05",
facecolor='#eff6ff',
edgecolor='#3b82f6',
linewidth=2
)
ax.add_patch(q_box)
# Question number badge
q_badge = Circle((left_margin + 0.4, y_pos - 0.5), 0.2,
facecolor='#3b82f6', edgecolor='white', linewidth=2)
ax.add_patch(q_badge)
ax.text(left_margin + 0.4, y_pos - 0.5, f'{i+1}',
fontsize=12, fontweight='bold', color='white',
horizontalalignment='center', verticalalignment='center')
# Question text
ax.text(left_margin + 0.8, y_pos - 0.3, 'QUESTION',
fontsize=9, fontweight='bold', color='#1e40af')
q_wrapped = wrapper.wrap(qa['question'])
for j, line in enumerate(q_wrapped[:3]): # Max 3 lines
ax.text(left_margin + 0.8, y_pos - 0.5 - (j * 0.15), line,
fontsize=11, fontweight='bold', color='#1e293b')
y_pos -= 1.4
# Answer section
answer_box = FancyBboxPatch(
(left_margin + 0.2, y_pos - 1.2), content_width - 0.4, 1.2,
boxstyle="round,pad=0.05",
facecolor='#f9fafb',
edgecolor='#d1d5db',
linewidth=1
)
ax.add_patch(answer_box)
ax.text(left_margin + 0.4, y_pos - 0.2, 'CANDIDATE RESPONSE',
fontsize=9, fontweight='bold', color='#6b7280')
a_wrapped = wrapper.wrap(qa['answer'])
for j, line in enumerate(a_wrapped[:4]): # Max 4 lines
ax.text(left_margin + 0.4, y_pos - 0.4 - (j * 0.15), line,
fontsize=10, color='#374151')
y_pos -= 1.6
# Evaluation section
eval_box = FancyBboxPatch(
(left_margin + 0.4, y_pos - 0.8), content_width - 0.8, 0.8,
boxstyle="round,pad=0.05",
facecolor='#fefefe',
edgecolor='#e5e7eb',
linewidth=1
)
ax.add_patch(eval_box)
# Score badge
score_color = _get_score_color(qa['score'])
score_badge = FancyBboxPatch(
(left_margin + 0.6, y_pos - 0.35), 1.2, 0.25,
boxstyle="round,pad=0.02",
facecolor=score_color,
alpha=0.2,
edgecolor=score_color,
linewidth=1
)
ax.add_patch(score_badge)
ax.text(left_margin + 1.2, y_pos - 0.225, qa['score'],
fontsize=10, fontweight='bold', color=score_color,
horizontalalignment='center', verticalalignment='center')
# Feedback
if qa['feedback'] and qa['feedback'] != 'N/A':
ax.text(left_margin + 2.2, y_pos - 0.15, 'Feedback:',
fontsize=9, fontweight='bold', color='#6b7280')
f_wrapped = wrapper.wrap(qa['feedback'])
for j, line in enumerate(f_wrapped[:2]): # Max 2 lines
ax.text(left_margin + 2.2, y_pos - 0.35 - (j * 0.15), line,
fontsize=9, color='#6b7280', style='italic')
y_pos -= 1.2
# Add separator between questions (except last)
if i < end_idx - 1:
separator = plt.Line2D([left_margin + 1, left_margin + content_width - 1],
[y_pos + 0.3, y_pos + 0.3],
color='#e5e7eb', linewidth=1, linestyle='--')
ax.add_line(separator)
y_pos -= 0.3
pdf.savefig(fig, bbox_inches='tight', pad_inches=0)
plt.close(fig)
# Keep the original advanced version as fallback
def create_pdf_report_advanced(report_text: str) -> BytesIO:
"""
Alternative implementation using reportlab for professional PDF generation.
This creates cleaner, more consistent PDFs with better text handling.
Install with: pip install reportlab
"""
try:
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.colors import HexColor
from reportlab.lib.enums import TA_LEFT, TA_CENTER
buffer = BytesIO()
# Create document with consistent margins
doc = SimpleDocTemplate(
buffer,
pagesize=A4,
rightMargin=0.75*inch,
leftMargin=0.75*inch,
topMargin=1*inch,
bottomMargin=1*inch
)
# Define consistent styles
styles = getSampleStyleSheet()
# Title style
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=16,
textColor=HexColor('#111827'),
spaceAfter=12,
alignment=TA_CENTER
)
# Header style for metadata
header_style = ParagraphStyle(
'Header',
parent=styles['Normal'],
fontSize=10,
textColor=HexColor('#111827'),
spaceAfter=4
)
# Question style
question_style = ParagraphStyle(
'Question',
parent=styles['Heading2'],
fontSize=11,
textColor=HexColor('#1e3a8a'),
spaceBefore=12,
spaceAfter=6,
fontName='Helvetica-Bold'
)
# Answer style
answer_style = ParagraphStyle(
'Answer',
parent=styles['Normal'],
fontSize=10,
textColor=HexColor('#374151'),
leftIndent=20,
spaceAfter=4
)
# Score style
score_style = ParagraphStyle(
'Score',
parent=styles['Normal'],
fontSize=10,
textColor=HexColor('#059669'),
leftIndent=20,
fontName='Helvetica-Bold',
spaceAfter=4
)
# Feedback style
feedback_style = ParagraphStyle(
'Feedback',
parent=styles['Normal'],
fontSize=10,
textColor=HexColor('#dc2626'),
leftIndent=20,
spaceAfter=8
)
# Build document content
story = []
lines = report_text.split('\n')
for line in lines:
stripped = line.strip()
if not stripped:
story.append(Spacer(1, 6))
elif 'Interview Report' in stripped:
story.append(Paragraph(stripped, title_style))
story.append(Spacer(1, 12))
elif any(stripped.startswith(x) for x in ['Candidate Name:', 'Candidate Email:', 'Job Applied:', 'Company:', 'Date Applied:']):
story.append(Paragraph(stripped, header_style))
elif stripped.startswith('Skills Match Summary:') or stripped.startswith('Interview Transcript'):
story.append(Spacer(1, 12))
story.append(Paragraph(f"<b>{stripped}</b>", header_style))
story.append(Spacer(1, 6))
elif stripped.startswith('Question'):
story.append(Paragraph(stripped, question_style))
elif stripped.startswith('Answer:'):
story.append(Paragraph(stripped, answer_style))
elif stripped.startswith('Score:'):
story.append(Paragraph(stripped, score_style))
elif stripped.startswith('Feedback:'):
story.append(Paragraph(stripped, feedback_style))
else:
# Regular text with proper indentation for sub-items
if stripped.startswith(' '):
indent_style = ParagraphStyle(
'Indented',
parent=styles['Normal'],
fontSize=10,
leftIndent=20,
spaceAfter=2
)
story.append(Paragraph(stripped, indent_style))
else:
story.append(Paragraph(stripped, styles['Normal']))
# Build PDF
doc.build(story)
buffer.seek(0)
return buffer
except ImportError:
# Fallback to matplotlib version if reportlab not available
print("Reportlab not installed. Using matplotlib version.")
return create_pdf_report(report_text)
__all__ = ['generate_llm_interview_report', 'create_pdf_report']