Spaces:
Paused
Paused
import os | |
import json | |
import asyncio | |
import edge_tts | |
from faster_whisper import WhisperModel | |
from langchain_groq import ChatGroq | |
import logging | |
# Initialize models | |
chat_groq_api = os.getenv("GROQ_API_KEY", "your-groq-api-key") | |
groq_llm = ChatGroq( | |
temperature=0.7, | |
model_name="llama-3.3-70b-versatile", | |
api_key=chat_groq_api | |
) | |
# Initialize Whisper model | |
whisper_model = None | |
def load_whisper_model(): | |
global whisper_model | |
if whisper_model is None: | |
device = "cuda" if os.system("nvidia-smi") == 0 else "cpu" | |
compute_type = "float16" if device == "cuda" else "int8" | |
whisper_model = WhisperModel("base", device=device, compute_type=compute_type) | |
return whisper_model | |
def generate_first_question(profile, job): | |
"""Generate the first interview question based on profile and job""" | |
try: | |
prompt = f""" | |
You are conducting an interview for a {job.role} position at {job.company}. | |
The candidate's profile shows: | |
- Skills: {profile.get('skills', [])} | |
- Experience: {profile.get('experience', [])} | |
- Education: {profile.get('education', [])} | |
Generate an appropriate opening interview question that is professional and relevant. | |
Keep it concise and clear. | |
""" | |
response = groq_llm.predict(prompt) | |
return response.strip() | |
except Exception as e: | |
logging.error(f"Error generating first question: {e}") | |
return "Tell me about yourself and why you're interested in this position." | |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"): | |
"""Synchronous wrapper for edge-tts""" | |
try: | |
# Create directory if it doesn't exist | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
async def generate_audio(): | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_path) | |
# Run async function in sync context | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
loop.run_until_complete(generate_audio()) | |
loop.close() | |
return output_path | |
except Exception as e: | |
logging.error(f"Error in TTS generation: {e}") | |
return None | |
def whisper_stt(audio_path): | |
"""Speech-to-text using Faster-Whisper""" | |
try: | |
if not audio_path or not os.path.exists(audio_path): | |
return "" | |
model = load_whisper_model() | |
segments, _ = model.transcribe(audio_path) | |
transcript = " ".join(segment.text for segment in segments) | |
return transcript.strip() | |
except Exception as e: | |
logging.error(f"Error in STT: {e}") | |
return "" | |
def evaluate_answer(question, answer, ref_answer, job_role, seniority): | |
"""Evaluate candidate's answer""" | |
try: | |
prompt = f""" | |
You are evaluating a candidate's answer for a {seniority} {job_role} position. | |
Question: {question} | |
Candidate Answer: {answer} | |
Reference Answer: {ref_answer} | |
Evaluate based on technical correctness, clarity, and relevance. | |
Respond with JSON format: | |
{{ | |
"Score": "Poor|Medium|Good|Excellent", | |
"Reasoning": "brief explanation", | |
"Improvements": ["suggestion1", "suggestion2"] | |
}} | |
""" | |
response = groq_llm.predict(prompt) | |
# Extract JSON from response | |
start_idx = response.find("{") | |
end_idx = response.rfind("}") + 1 | |
json_str = response[start_idx:end_idx] | |
return json.loads(json_str) | |
except Exception as e: | |
logging.error(f"Error evaluating answer: {e}") | |
return { | |
"Score": "Medium", | |
"Reasoning": "Evaluation failed", | |
"Improvements": ["Please be more specific"] | |
} |