Spaces:
Paused
Paused
"""Utilities for assembling and exporting interview reports. | |
This module provides two primary helpers used by the recruiter dashboard: | |
``generate_llm_interview_report(application)`` | |
Given a candidate's ``Application`` record, assemble a plain‑text report | |
summarising the interview. Because the interview process currently | |
executes entirely client‑side and does not persist questions or answers | |
to the database, this report focuses on the information available on | |
the server: the candidate's profile, the job requirements and a skills | |
match score. Should future iterations store richer interview data | |
server‑side, this function can be extended to include question/answer | |
transcripts, per‑question scores and LLM‑generated feedback. | |
``create_pdf_report(report_text)`` | |
Convert a multi‑line string into a simple PDF. The implementation | |
leverages Matplotlib's PDF backend (available by default) to avoid | |
heavyweight dependencies such as ReportLab or WeasyPrint, which are | |
absent from the runtime environment. Text is wrapped and split | |
across multiple pages as necessary. | |
""" | |
from __future__ import annotations | |
import json | |
from io import BytesIO | |
import textwrap | |
from typing import List | |
import matplotlib.pyplot as plt | |
from matplotlib.backends.backend_pdf import PdfPages | |
def generate_llm_interview_report(application) -> str: | |
"""Generate a human‑readable interview report for a candidate. | |
The report includes the candidate's name and email, job details, | |
application date, a computed skills match summary and placeholder | |
sections for future enhancements. If server‑side storage of | |
question/answer pairs is added later, this function can be updated | |
to incorporate those details. | |
Parameters | |
---------- | |
application : backend.models.database.Application | |
The SQLAlchemy Application instance representing the candidate's | |
job application. Assumed to have related ``job`` and | |
``date_applied`` attributes available. | |
Returns | |
------- | |
str | |
A multi‑line string containing the report contents. | |
""" | |
# Defensive imports to avoid circular dependencies at import time | |
try: | |
from datetime import datetime # noqa: F401 | |
except Exception: | |
pass | |
# Extract candidate skills and job skills | |
try: | |
candidate_features = json.loads(application.extracted_features) if application.extracted_features else {} | |
except Exception: | |
candidate_features = {} | |
candidate_skills: List[str] = candidate_features.get('skills', []) or [] | |
job_skills: List[str] = [] | |
try: | |
job_skills = json.loads(application.job.skills) if application.job and application.job.skills else [] | |
except Exception: | |
job_skills = [] | |
# Compute skills match ratio and label. Normalise to lower case for | |
# comparison and avoid dividing by zero when ``job_skills`` is empty. | |
candidate_set = {s.strip().lower() for s in candidate_skills} | |
job_set = {s.strip().lower() for s in job_skills} | |
common = candidate_set & job_set | |
ratio = len(common) / len(job_set) if job_set else 0.0 | |
if ratio >= 0.75: | |
score_label = 'Excellent' | |
elif ratio >= 0.5: | |
score_label = 'Good' | |
elif ratio >= 0.25: | |
score_label = 'Medium' | |
else: | |
score_label = 'Poor' | |
# Assemble report lines | |
lines: List[str] = [] | |
lines.append('Interview Report') | |
lines.append('=================') | |
lines.append('') | |
lines.append(f'Candidate Name: {application.name}') | |
lines.append(f'Candidate Email: {application.email}') | |
if application.job: | |
lines.append(f'Job Applied: {application.job.role}') | |
lines.append(f'Company: {application.job.company}') | |
else: | |
lines.append('Job Applied: N/A') | |
lines.append('Company: N/A') | |
# Format date_applied if available | |
try: | |
date_str = application.date_applied.strftime('%Y-%m-%d') if application.date_applied else 'N/A' | |
except Exception: | |
date_str = 'N/A' | |
lines.append(f'Date Applied: {date_str}') | |
lines.append('') | |
lines.append('Skills Match Summary:') | |
# Represent required and candidate skills as comma‑separated lists. Use | |
# title‑case for presentation and handle empty lists gracefully. | |
formatted_job_skills = ', '.join(job_skills) if job_skills else 'N/A' | |
formatted_candidate_skills = ', '.join(candidate_skills) if candidate_skills else 'N/A' | |
formatted_common = ', '.join(sorted(common)) if common else 'None' | |
lines.append(f' Required Skills: {formatted_job_skills}') | |
lines.append(f' Candidate Skills: {formatted_candidate_skills}') | |
lines.append(f' Skills in Common: {formatted_common}') | |
lines.append(f' Match Ratio: {ratio * 100:.0f}%') | |
lines.append(f' Score: {score_label}') | |
lines.append('') | |
lines.append('Interview Transcript & Evaluation:') | |
try: | |
if application.interview_log: | |
try: | |
qa_log = json.loads(application.interview_log) | |
except Exception: | |
qa_log = [] | |
if qa_log: | |
for idx, entry in enumerate(qa_log, 1): | |
q = entry.get("question", "N/A") | |
a = entry.get("answer", "N/A") | |
eval_score = entry.get("evaluation", {}).get("score", "N/A") | |
eval_feedback = entry.get("evaluation", {}).get("feedback", "N/A") | |
lines.append(f"\nQuestion {idx}: {q}") | |
lines.append(f"Answer: {a}") | |
lines.append(f"Score: {eval_score}") | |
lines.append(f"Feedback: {eval_feedback}") | |
else: | |
lines.append("No interview log data recorded.") | |
else: | |
lines.append("No interview log data recorded.") | |
except Exception as e: | |
lines.append(f"Error loading interview log: {e}") | |
return '\n'.join(lines) | |
def create_pdf_report(report_text: str) -> BytesIO: | |
""" | |
Alternative implementation using reportlab for better PDF generation. | |
Install with: pip install reportlab | |
""" | |
try: | |
from reportlab.lib.pagesizes import A4 | |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle | |
from reportlab.lib.units import inch | |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak | |
from reportlab.lib.colors import HexColor | |
buffer = BytesIO() | |
doc = SimpleDocTemplate( | |
buffer, | |
pagesize=A4, | |
rightMargin=0.75*inch, | |
leftMargin=0.75*inch, | |
topMargin=1*inch, | |
bottomMargin=1*inch | |
) | |
# Create custom styles | |
styles = getSampleStyleSheet() | |
question_style = ParagraphStyle( | |
'Question', | |
parent=styles['Heading2'], | |
fontSize=12, | |
textColor=HexColor('#2C3E50'), | |
spaceAfter=6, | |
spaceBefore=12 | |
) | |
answer_style = ParagraphStyle( | |
'Answer', | |
parent=styles['Normal'], | |
fontSize=10, | |
textColor=HexColor('#34495E'), | |
leftIndent=20, | |
spaceAfter=3 | |
) | |
score_style = ParagraphStyle( | |
'Score', | |
parent=styles['Normal'], | |
fontSize=10, | |
textColor=HexColor('#27AE60'), | |
leftIndent=20, | |
fontName='Helvetica-Bold' | |
) | |
feedback_style = ParagraphStyle( | |
'Feedback', | |
parent=styles['Normal'], | |
fontSize=10, | |
textColor=HexColor('#E74C3C'), | |
leftIndent=20, | |
spaceAfter=6 | |
) | |
# Build document content | |
story = [] | |
lines = report_text.split('\n') | |
for line in lines: | |
stripped = line.strip() | |
if stripped.startswith('Question'): | |
story.append(Paragraph(stripped, question_style)) | |
elif stripped.startswith('Answer:'): | |
story.append(Paragraph(stripped, answer_style)) | |
elif stripped.startswith('Score:'): | |
story.append(Paragraph(stripped, score_style)) | |
elif stripped.startswith('Feedback:'): | |
story.append(Paragraph(stripped, feedback_style)) | |
elif stripped: | |
story.append(Paragraph(stripped, styles['Normal'])) | |
else: | |
story.append(Spacer(1, 12)) | |
# Build PDF | |
doc.build(story) | |
buffer.seek(0) | |
return buffer | |
__all__ = ['generate_llm_interview_report', 'create_pdf_report'] |