Spaces:
Paused
Paused
Commit
·
0bd189c
1
Parent(s):
9019090
updated
Browse files- app.py +97 -43
- backend/templates/base.html +21 -0
- chatbot/requirements.txt +1 -2
- requirements.txt +7 -8
app.py
CHANGED
|
@@ -54,13 +54,59 @@ import shutil
|
|
| 54 |
shutil.rmtree("/app/chatbot/chroma_db", ignore_errors=True)
|
| 55 |
CHATBOT_TXT_PATH = os.path.join(current_dir, 'chatbot', 'chatbot.txt')
|
| 56 |
CHATBOT_DB_DIR = "/tmp/chroma_db"
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
#
|
| 60 |
-
#
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Global objects used by the chatbot. They remain ``None`` until
|
| 66 |
# ``init_chatbot()`` runs. After initialisation, ``_chatbot_embedder`` holds
|
|
@@ -129,16 +175,18 @@ def init_chatbot() -> None:
|
|
| 129 |
_chatbot_collection = collection
|
| 130 |
|
| 131 |
def get_chatbot_response(query: str) -> str:
|
| 132 |
-
"""Generate a reply to the user's query using the knowledge base and
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
|
| 143 |
Parameters
|
| 144 |
----------
|
|
@@ -150,45 +198,51 @@ def get_chatbot_response(query: str) -> str:
|
|
| 150 |
str
|
| 151 |
The assistant's reply.
|
| 152 |
"""
|
|
|
|
| 153 |
init_chatbot()
|
| 154 |
-
|
| 155 |
-
import openai
|
| 156 |
embedder = _chatbot_embedder
|
| 157 |
collection = _chatbot_collection
|
| 158 |
-
|
|
|
|
| 159 |
query_embedding = embedder.encode([query])[0]
|
| 160 |
results = collection.query(query_embeddings=[query_embedding], n_results=3)
|
| 161 |
-
retrieved_docs = results
|
| 162 |
context = "\n".join(retrieved_docs)
|
| 163 |
-
|
|
|
|
| 164 |
system_prompt = (
|
| 165 |
"You are a helpful assistant for the Codingo website. "
|
| 166 |
"Only answer questions that are directly relevant to the context provided. "
|
| 167 |
"If the user asks anything unrelated, politely refuse by saying: "
|
| 168 |
"\"I'm only trained to answer questions about the Codingo platform.\""
|
| 169 |
)
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
#
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
temperature=0.3,
|
| 189 |
)
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
# Initialize Flask app
|
| 194 |
app = Flask(
|
|
|
|
| 54 |
shutil.rmtree("/app/chatbot/chroma_db", ignore_errors=True)
|
| 55 |
CHATBOT_TXT_PATH = os.path.join(current_dir, 'chatbot', 'chatbot.txt')
|
| 56 |
CHATBOT_DB_DIR = "/tmp/chroma_db"
|
| 57 |
+
# -----------------------------------------------------------------------------
|
| 58 |
+
# Hugging Face model configuration
|
| 59 |
+
#
|
| 60 |
+
# The original chatbot implementation sent queries to the Groq API via the
|
| 61 |
+
# OpenAI client. To remove that dependency we now load a small conversational
|
| 62 |
+
# model from Hugging Face. ``HF_MODEL_NAME`` defines which model to use. The
|
| 63 |
+
# default value, ``facebook/blenderbot-400M-distill``, provides a good
|
| 64 |
+
# balance between quality and resource consumption and is available on
|
| 65 |
+
# Hugging Face without requiring authentication. Should you wish to swap to
|
| 66 |
+
# another conversational model (e.g. ``microsoft/DialoGPT-medium``), update
|
| 67 |
+
# this constant accordingly. The model and tokenizer are loaded lazily in
|
| 68 |
+
# ``init_hf_model()`` to avoid impacting application startup time.
|
| 69 |
+
HF_MODEL_NAME = "facebook/blenderbot-400M-distill"
|
| 70 |
+
|
| 71 |
+
# Global Hugging Face model and tokenizer. These variables remain ``None``
|
| 72 |
+
# until ``init_hf_model()`` is called. They are reused across all chatbot
|
| 73 |
+
# requests to prevent repeatedly loading the large model into memory.
|
| 74 |
+
_hf_model = None
|
| 75 |
+
_hf_tokenizer = None
|
| 76 |
+
|
| 77 |
+
def init_hf_model() -> None:
|
| 78 |
+
"""Initialise the Hugging Face conversational model and tokenizer.
|
| 79 |
+
|
| 80 |
+
Loading large Transformer models can be expensive. This helper ensures
|
| 81 |
+
that we only perform the download and model initialisation once. On
|
| 82 |
+
subsequent calls the function returns immediately if the model and
|
| 83 |
+
tokenizer are already loaded. The model is moved to GPU if one is
|
| 84 |
+
available; otherwise it will run on the CPU. Any import of heavy
|
| 85 |
+
dependencies such as ``transformers`` or ``torch`` is performed inside
|
| 86 |
+
this function to keep the global import section lightweight.
|
| 87 |
+
"""
|
| 88 |
+
global _hf_model, _hf_tokenizer
|
| 89 |
+
if _hf_model is not None and _hf_tokenizer is not None:
|
| 90 |
+
return
|
| 91 |
+
# Local imports to avoid pulling heavy dependencies during module import.
|
| 92 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 93 |
+
import torch
|
| 94 |
+
|
| 95 |
+
# Determine execution device. Prefer CUDA if available; otherwise
|
| 96 |
+
# fallback to CPU. The application will run correctly on CPU-only
|
| 97 |
+
# systems albeit with higher latency.
|
| 98 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 99 |
+
|
| 100 |
+
# Load tokenizer and model. The model weights will be downloaded the
|
| 101 |
+
# first time this function runs. Hugging Face caches models under
|
| 102 |
+
# ``HF_HOME`` / ``TRANSFORMERS_CACHE`` which are set at the top of
|
| 103 |
+
# this file to a writable temporary directory.
|
| 104 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_NAME)
|
| 105 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(HF_MODEL_NAME)
|
| 106 |
+
model.to(device)
|
| 107 |
+
|
| 108 |
+
_hf_model = model
|
| 109 |
+
_hf_tokenizer = tokenizer
|
| 110 |
|
| 111 |
# Global objects used by the chatbot. They remain ``None`` until
|
| 112 |
# ``init_chatbot()`` runs. After initialisation, ``_chatbot_embedder`` holds
|
|
|
|
| 175 |
_chatbot_collection = collection
|
| 176 |
|
| 177 |
def get_chatbot_response(query: str) -> str:
|
| 178 |
+
"""Generate a reply to the user's query using the knowledge base and a Hugging Face model.
|
| 179 |
+
|
| 180 |
+
This function performs a two‑stage process to answer user questions. First
|
| 181 |
+
it ensures that the vector store and embedder are available via
|
| 182 |
+
``init_chatbot()``, then embeds the query to retrieve the most relevant
|
| 183 |
+
context chunks from ``chatbot.txt`` using Chroma. Second, it calls
|
| 184 |
+
``init_hf_model()`` to lazily load a conversational model from Hugging
|
| 185 |
+
Face. The retrieved context, together with a system instruction,
|
| 186 |
+
constitute the prompt for the model. The model is then run to
|
| 187 |
+
generate an answer. If the user asks a question unrelated to the
|
| 188 |
+
Codingo platform the system prompt instructs the model to refuse
|
| 189 |
+
politely.
|
| 190 |
|
| 191 |
Parameters
|
| 192 |
----------
|
|
|
|
| 198 |
str
|
| 199 |
The assistant's reply.
|
| 200 |
"""
|
| 201 |
+
# Ensure the embedding model and vector store are ready.
|
| 202 |
init_chatbot()
|
| 203 |
+
init_hf_model()
|
|
|
|
| 204 |
embedder = _chatbot_embedder
|
| 205 |
collection = _chatbot_collection
|
| 206 |
+
# Compute embedding for the query and retrieve the top three matching
|
| 207 |
+
# context chunks. Chroma returns a list of documents for each query.
|
| 208 |
query_embedding = embedder.encode([query])[0]
|
| 209 |
results = collection.query(query_embeddings=[query_embedding], n_results=3)
|
| 210 |
+
retrieved_docs = results.get('documents', [[]])[0] if results else []
|
| 211 |
context = "\n".join(retrieved_docs)
|
| 212 |
+
# Construct the system prompt. This instruction encourages the model to
|
| 213 |
+
# answer only questions related to the context and to decline otherwise.
|
| 214 |
system_prompt = (
|
| 215 |
"You are a helpful assistant for the Codingo website. "
|
| 216 |
"Only answer questions that are directly relevant to the context provided. "
|
| 217 |
"If the user asks anything unrelated, politely refuse by saying: "
|
| 218 |
"\"I'm only trained to answer questions about the Codingo platform.\""
|
| 219 |
)
|
| 220 |
+
# Compose the complete prompt with context and user question. Including
|
| 221 |
+
# the system prompt inline helps guide smaller conversational models.
|
| 222 |
+
prompt = f"{system_prompt}\n\nContext:\n{context}\n\nQuestion: {query}\n\nAnswer:"
|
| 223 |
+
# Generate a response using the Hugging Face model. The global model
|
| 224 |
+
# variables are guaranteed to be initialised by ``init_hf_model()``.
|
| 225 |
+
model = _hf_model
|
| 226 |
+
tokenizer = _hf_tokenizer
|
| 227 |
+
device = model.device
|
| 228 |
+
# Encode the prompt and perform generation. ``generate`` will
|
| 229 |
+
# automatically use the model's device (CPU or GPU). We limit the
|
| 230 |
+
# response length to 200 tokens to keep answers concise.
|
| 231 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 232 |
+
output_ids = model.generate(
|
| 233 |
+
**inputs,
|
| 234 |
+
max_length=200,
|
| 235 |
+
num_beams=1,
|
| 236 |
+
do_sample=False,
|
| 237 |
+
early_stopping=True
|
|
|
|
| 238 |
)
|
| 239 |
+
reply = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 240 |
+
# The reply may include the prompt prefix; extract the generated answer
|
| 241 |
+
# following the original prompt. If the model echoes the prompt, we
|
| 242 |
+
# remove the prompt part to return only the answer.
|
| 243 |
+
if reply.startswith(prompt):
|
| 244 |
+
reply = reply[len(prompt):]
|
| 245 |
+
return reply.strip()
|
| 246 |
|
| 247 |
# Initialize Flask app
|
| 248 |
app = Flask(
|
backend/templates/base.html
CHANGED
|
@@ -804,6 +804,7 @@
|
|
| 804 |
position: fixed;
|
| 805 |
bottom: 80px;
|
| 806 |
right: 20px;
|
|
|
|
| 807 |
width: 300px;
|
| 808 |
height: 400px;
|
| 809 |
background: white;
|
|
@@ -829,6 +830,26 @@
|
|
| 829 |
max-height: 300px;
|
| 830 |
}
|
| 831 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 832 |
#chat-input {
|
| 833 |
border: none;
|
| 834 |
border-top: 1px solid #ccc;
|
|
|
|
| 804 |
position: fixed;
|
| 805 |
bottom: 80px;
|
| 806 |
right: 20px;
|
| 807 |
+
/* Default dimensions for larger screens */
|
| 808 |
width: 300px;
|
| 809 |
height: 400px;
|
| 810 |
background: white;
|
|
|
|
| 830 |
max-height: 300px;
|
| 831 |
}
|
| 832 |
|
| 833 |
+
/* Responsive adjustments for small screens */
|
| 834 |
+
@media (max-width: 600px) {
|
| 835 |
+
#chatbot-box {
|
| 836 |
+
width: 90vw;
|
| 837 |
+
height: 60vh;
|
| 838 |
+
bottom: 70px;
|
| 839 |
+
right: 5vw;
|
| 840 |
+
}
|
| 841 |
+
#chat-messages {
|
| 842 |
+
max-height: calc(60vh - 100px);
|
| 843 |
+
}
|
| 844 |
+
}
|
| 845 |
+
@media (max-width: 400px) {
|
| 846 |
+
#chatbot-toggle {
|
| 847 |
+
bottom: 10px;
|
| 848 |
+
right: 10px;
|
| 849 |
+
padding: 10px 12px;
|
| 850 |
+
}
|
| 851 |
+
}
|
| 852 |
+
|
| 853 |
#chat-input {
|
| 854 |
border: none;
|
| 855 |
border-top: 1px solid #ccc;
|
chatbot/requirements.txt
CHANGED
|
@@ -1,3 +1,2 @@
|
|
| 1 |
flask
|
| 2 |
-
flask-cors
|
| 3 |
-
groq
|
|
|
|
| 1 |
flask
|
| 2 |
+
flask-cors
|
|
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
|
| 2 |
|
|
|
|
| 3 |
flask
|
| 4 |
flask_login
|
| 5 |
flask_sqlalchemy
|
|
@@ -48,15 +49,13 @@ gunicorn
|
|
| 48 |
python-dotenv
|
| 49 |
|
| 50 |
# --- Chatbot Dependencies ---
|
| 51 |
-
# The chatbot feature relies on a vector database
|
| 52 |
-
#
|
| 53 |
-
#
|
| 54 |
-
#
|
| 55 |
-
#
|
| 56 |
-
#
|
| 57 |
chromadb>=0.4.0
|
| 58 |
-
# openai>=1.8.0
|
| 59 |
-
openai==0.28
|
| 60 |
flask-cors>=4.0.0
|
| 61 |
|
| 62 |
# Audio format conversion (critical for WebM/WAV handling)
|
|
|
|
| 1 |
|
| 2 |
|
| 3 |
+
|
| 4 |
flask
|
| 5 |
flask_login
|
| 6 |
flask_sqlalchemy
|
|
|
|
| 49 |
python-dotenv
|
| 50 |
|
| 51 |
# --- Chatbot Dependencies ---
|
| 52 |
+
# The chatbot feature relies on a vector database for semantic search over
|
| 53 |
+
# the knowledge base stored in ``chatbot/chatbot.txt``. ``chromadb`` provides
|
| 54 |
+
# this capability. We removed the OpenAI dependency in favour of a local
|
| 55 |
+
# Hugging Face model, so no openai package is required. ``flask-cors`` is
|
| 56 |
+
# retained to allow cross‑origin requests should the chat UI be decoupled in
|
| 57 |
+
# the future.
|
| 58 |
chromadb>=0.4.0
|
|
|
|
|
|
|
| 59 |
flask-cors>=4.0.0
|
| 60 |
|
| 61 |
# Audio format conversion (critical for WebM/WAV handling)
|