Spaces:
Paused
Paused
Commit
·
0c4a8eb
1
Parent(s):
72f831c
chatbot updated
Browse files- chatbot/chatbot.py +154 -61
chatbot/chatbot.py
CHANGED
@@ -36,15 +36,37 @@ def _init_hf_model() -> None:
|
|
36 |
|
37 |
model_name = os.getenv("HF_CHATBOT_MODEL", DEFAULT_MODEL_NAME)
|
38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
40 |
try:
|
41 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
42 |
except Exception:
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
model = model.to(device)
|
|
|
|
|
|
|
45 |
if tokenizer.pad_token is None:
|
46 |
-
tokenizer.
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
_hf_model = model
|
49 |
_hf_tokenizer = tokenizer
|
50 |
|
@@ -58,8 +80,10 @@ def _init_vector_store() -> None:
|
|
58 |
import chromadb
|
59 |
from chromadb.config import Settings
|
60 |
|
61 |
-
|
|
|
62 |
os.makedirs(_chroma_db_dir, exist_ok=True)
|
|
|
63 |
try:
|
64 |
with open(_knowledge_base_path, encoding="utf-8") as f:
|
65 |
raw_text = f.read()
|
@@ -73,74 +97,143 @@ def _init_vector_store() -> None:
|
|
73 |
|
74 |
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=100)
|
75 |
docs: List[str] = [doc.strip() for doc in splitter.split_text(raw_text) if doc.strip()]
|
|
|
|
|
76 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
77 |
embeddings = embedder.encode(docs, show_progress_bar=False, batch_size=32)
|
|
|
|
|
78 |
client = chromadb.Client(Settings(
|
79 |
persist_directory=_chroma_db_dir,
|
80 |
anonymized_telemetry=False,
|
81 |
is_persistent=True,
|
82 |
))
|
83 |
-
|
|
|
84 |
try:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
|
92 |
_chatbot_embedder = embedder
|
93 |
_chatbot_collection = collection
|
94 |
|
95 |
def get_chatbot_response(query: str) -> str:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
prompt
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
model_name = os.getenv("HF_CHATBOT_MODEL", DEFAULT_MODEL_NAME)
|
38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
|
40 |
+
# Initialize tokenizer with proper configuration
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
+
|
43 |
+
# Try loading the model with proper error handling
|
44 |
try:
|
45 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
46 |
+
model_type = "causal"
|
47 |
except Exception:
|
48 |
+
try:
|
49 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
50 |
+
model_type = "seq2seq"
|
51 |
+
except Exception as e:
|
52 |
+
print(f"Error loading model: {e}")
|
53 |
+
raise
|
54 |
+
|
55 |
+
# Move model to device
|
56 |
model = model.to(device)
|
57 |
+
model.eval() # Set to evaluation mode
|
58 |
+
|
59 |
+
# Ensure proper padding token configuration
|
60 |
if tokenizer.pad_token is None:
|
61 |
+
if tokenizer.eos_token is not None:
|
62 |
+
tokenizer.pad_token = tokenizer.eos_token
|
63 |
+
else:
|
64 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
65 |
+
model.resize_token_embeddings(len(tokenizer))
|
66 |
+
|
67 |
+
# Store model type for later use
|
68 |
+
model.model_type = model_type
|
69 |
+
|
70 |
_hf_model = model
|
71 |
_hf_tokenizer = tokenizer
|
72 |
|
|
|
80 |
import chromadb
|
81 |
from chromadb.config import Settings
|
82 |
|
83 |
+
# Clean up old database
|
84 |
+
shutil.rmtree(_chroma_db_dir, ignore_errors=True)
|
85 |
os.makedirs(_chroma_db_dir, exist_ok=True)
|
86 |
+
|
87 |
try:
|
88 |
with open(_knowledge_base_path, encoding="utf-8") as f:
|
89 |
raw_text = f.read()
|
|
|
97 |
|
98 |
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=100)
|
99 |
docs: List[str] = [doc.strip() for doc in splitter.split_text(raw_text) if doc.strip()]
|
100 |
+
|
101 |
+
# Initialize embedder
|
102 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
103 |
embeddings = embedder.encode(docs, show_progress_bar=False, batch_size=32)
|
104 |
+
|
105 |
+
# Initialize ChromaDB
|
106 |
client = chromadb.Client(Settings(
|
107 |
persist_directory=_chroma_db_dir,
|
108 |
anonymized_telemetry=False,
|
109 |
is_persistent=True,
|
110 |
))
|
111 |
+
|
112 |
+
# Create or recreate collection
|
113 |
try:
|
114 |
+
client.delete_collection("chatbot")
|
115 |
+
except:
|
116 |
+
pass
|
117 |
+
|
118 |
+
collection = client.create_collection("chatbot")
|
119 |
+
|
120 |
+
# Add documents
|
121 |
+
ids = [f"doc_{i}" for i in range(len(docs))]
|
122 |
+
collection.add(documents=docs, embeddings=embeddings.tolist(), ids=ids)
|
123 |
|
124 |
_chatbot_embedder = embedder
|
125 |
_chatbot_collection = collection
|
126 |
|
127 |
def get_chatbot_response(query: str) -> str:
|
128 |
+
try:
|
129 |
+
if not query or not query.strip():
|
130 |
+
return "Please type a question about the Codingo platform."
|
131 |
+
|
132 |
+
# Clear GPU cache before processing
|
133 |
+
import torch
|
134 |
+
if torch.cuda.is_available():
|
135 |
+
torch.cuda.empty_cache()
|
136 |
+
|
137 |
+
_init_vector_store()
|
138 |
+
_init_hf_model()
|
139 |
+
|
140 |
+
embedder = _chatbot_embedder
|
141 |
+
collection = _chatbot_collection
|
142 |
+
model = _hf_model
|
143 |
+
tokenizer = _hf_tokenizer
|
144 |
+
|
145 |
+
import torch
|
146 |
+
|
147 |
+
# Get relevant documents
|
148 |
+
query_embedding = embedder.encode([query])[0]
|
149 |
+
results = collection.query(query_embeddings=[query_embedding.tolist()], n_results=3)
|
150 |
+
retrieved_docs = results.get("documents", [[]])[0] if results else []
|
151 |
+
context = "\n".join(retrieved_docs[:3])
|
152 |
+
|
153 |
+
# Prepare the prompt based on model type
|
154 |
+
if hasattr(model, 'model_type') and model.model_type == "seq2seq":
|
155 |
+
# For seq2seq models like BlenderBot
|
156 |
+
prompt = f"Context: {context}\n\nUser: {query}\nAssistant:"
|
157 |
+
else:
|
158 |
+
# For causal models
|
159 |
+
system_instruction = (
|
160 |
+
"You are LUNA AI, a helpful assistant for the Codingo recruitment "
|
161 |
+
"platform. Use the provided context to answer questions about "
|
162 |
+
"Codingo. If the question is not related to Codingo, politely "
|
163 |
+
"redirect the conversation. Keep responses concise and friendly."
|
164 |
+
)
|
165 |
+
prompt = f"{system_instruction}\n\nContext:\n{context}\n\nUser: {query}\nLUNA AI:"
|
166 |
+
|
167 |
+
# Tokenize with proper handling
|
168 |
+
inputs = tokenizer(
|
169 |
+
prompt,
|
170 |
+
return_tensors="pt",
|
171 |
+
truncation=True,
|
172 |
+
max_length=512,
|
173 |
+
padding=True,
|
174 |
+
return_attention_mask=True
|
175 |
)
|
176 |
+
|
177 |
+
# Move all tensors to the same device
|
178 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
179 |
+
|
180 |
+
# Generate response with error handling
|
181 |
+
with torch.no_grad():
|
182 |
+
try:
|
183 |
+
# Use different generation parameters based on model type
|
184 |
+
if hasattr(model, 'model_type') and model.model_type == "seq2seq":
|
185 |
+
output_ids = model.generate(
|
186 |
+
input_ids=inputs['input_ids'],
|
187 |
+
attention_mask=inputs['attention_mask'],
|
188 |
+
max_new_tokens=150,
|
189 |
+
min_length=10,
|
190 |
+
num_beams=3,
|
191 |
+
do_sample=True,
|
192 |
+
temperature=0.7,
|
193 |
+
top_p=0.9,
|
194 |
+
pad_token_id=tokenizer.pad_token_id,
|
195 |
+
eos_token_id=tokenizer.eos_token_id,
|
196 |
+
early_stopping=True,
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
output_ids = model.generate(
|
200 |
+
input_ids=inputs['input_ids'],
|
201 |
+
attention_mask=inputs['attention_mask'],
|
202 |
+
max_new_tokens=150,
|
203 |
+
num_beams=3,
|
204 |
+
do_sample=True,
|
205 |
+
temperature=0.7,
|
206 |
+
pad_token_id=tokenizer.pad_token_id,
|
207 |
+
eos_token_id=tokenizer.eos_token_id,
|
208 |
+
)
|
209 |
+
except Exception as e:
|
210 |
+
print(f"Generation error: {e}")
|
211 |
+
# Fallback to a simple response
|
212 |
+
return "I'm here to help you with questions about the Codingo platform. Could you please rephrase your question?"
|
213 |
+
|
214 |
+
# Decode the response
|
215 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
216 |
+
|
217 |
+
# Clean up the response
|
218 |
+
if "Assistant:" in response:
|
219 |
+
response = response.split("Assistant:")[-1].strip()
|
220 |
+
elif "LUNA AI:" in response:
|
221 |
+
response = response.split("LUNA AI:")[-1].strip()
|
222 |
+
elif prompt in response:
|
223 |
+
response = response.replace(prompt, "").strip()
|
224 |
+
|
225 |
+
# Remove the input prompt if it's still in the response
|
226 |
+
if query in response:
|
227 |
+
response = response.split(query)[-1].strip()
|
228 |
+
|
229 |
+
return (
|
230 |
+
response
|
231 |
+
if response and len(response) > 5
|
232 |
+
else "I'm here to help you with questions about the Codingo platform. What would you like to know?"
|
233 |
+
)
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Chatbot error: {e}")
|
237 |
+
import traceback
|
238 |
+
traceback.print_exc()
|
239 |
+
return "I apologize, but I'm having trouble processing your request. Please try again with a different question about Codingo."
|