Spaces:
Paused
Paused
Commit
·
0e43f07
1
Parent(s):
722e882
gemini updated
Browse files
backend/services/resume_parser.py
CHANGED
@@ -23,15 +23,16 @@ bnb_config = BitsAndBytesConfig(
|
|
23 |
bnb_4bit_quant_type="nf4"
|
24 |
)
|
25 |
|
26 |
-
|
|
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
-
"
|
29 |
quantization_config=bnb_config,
|
30 |
-
device_map="auto"
|
|
|
|
|
31 |
)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
# ===============================
|
36 |
# Text Extraction (PDF/DOCX)
|
37 |
# ===============================
|
@@ -88,75 +89,17 @@ def extract_name(text: str, filename: str) -> str:
|
|
88 |
# Janus-Pro Parsing
|
89 |
# ===============================
|
90 |
def parse_with_deepseek(text: str) -> dict:
|
91 |
-
"""Use
|
|
|
92 |
prompt = f"""
|
93 |
-
|
94 |
-
|
95 |
-
- Full Name
|
96 |
-
- Skills (comma separated)
|
97 |
-
- Education (degrees + institutions)
|
98 |
-
- Experience (job titles + companies)
|
99 |
-
|
100 |
-
Return only valid JSON in the following structure:
|
101 |
-
{{
|
102 |
-
"name": "Full Name",
|
103 |
-
"skills": "Skill1, Skill2, Skill3",
|
104 |
-
"education": "Degree1 - Institution1; Degree2 - Institution2",
|
105 |
-
"experience": "Job1 - Company1; Job2 - Company2"
|
106 |
-
}}
|
107 |
-
|
108 |
-
Resume:
|
109 |
-
{text}
|
110 |
-
"""
|
111 |
-
|
112 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
113 |
-
outputs = model.generate(**inputs, max_new_tokens=512)
|
114 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
115 |
-
|
116 |
-
# Extract JSON safely
|
117 |
-
match = re.search(r"\{.*\}", response, re.S)
|
118 |
-
if match:
|
119 |
-
try:
|
120 |
-
return json.loads(match.group())
|
121 |
-
except:
|
122 |
-
pass
|
123 |
-
return {"name": "", "skills": "", "education": "", "experience": ""}
|
124 |
-
|
125 |
-
# ===============================
|
126 |
-
# Fallback Heading-based Parsing
|
127 |
-
# ===============================
|
128 |
-
def fallback_parse(text: str) -> dict:
|
129 |
-
"""Simple heading-based parsing as backup."""
|
130 |
-
skills = re.findall(r"Skills\s*[:\-]?\s*(.*)", text, re.I)
|
131 |
-
education = re.findall(r"Education\s*[:\-]?\s*(.*)", text, re.I)
|
132 |
-
experience = re.findall(r"(Experience|Work History)\s*[:\-]?\s*(.*)", text, re.I)
|
133 |
-
return {
|
134 |
-
"skills": ", ".join(skills),
|
135 |
-
"education": ", ".join(education),
|
136 |
-
"experience": ", ".join([exp[1] for exp in experience])
|
137 |
-
}
|
138 |
-
|
139 |
-
# ===============================
|
140 |
-
# Main Parse Function
|
141 |
-
# ===============================
|
142 |
-
def parse_resume(file_path: str, filename: str) -> dict:
|
143 |
-
"""Main resume parsing function."""
|
144 |
-
text = extract_text(file_path)
|
145 |
-
name = extract_name(text, filename)
|
146 |
-
|
147 |
-
# Try Janus-Pro parsing
|
148 |
-
ents = parse_with_deepseek(text)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
-
|
158 |
-
"name": ents.get("name") or name,
|
159 |
-
"skills": ents.get("skills", ""),
|
160 |
-
"education": ents.get("education", ""),
|
161 |
-
"experience": ents.get("experience", "")
|
162 |
-
}
|
|
|
23 |
bnb_4bit_quant_type="nf4"
|
24 |
)
|
25 |
|
26 |
+
# --- UPDATED: Using Deepseek-Coder-V2-Lite-Instruct for better performance ---
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/Deepseek-Coder-V2-Lite-Instruct", trust_remote_code=True)
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
"deepseek-ai/Deepseek-Coder-V2-Lite-Instruct",
|
30 |
quantization_config=bnb_config,
|
31 |
+
device_map="auto",
|
32 |
+
torch_dtype=torch.bfloat16,
|
33 |
+
trust_remote_code=True
|
34 |
)
|
35 |
|
|
|
|
|
36 |
# ===============================
|
37 |
# Text Extraction (PDF/DOCX)
|
38 |
# ===============================
|
|
|
89 |
# Janus-Pro Parsing
|
90 |
# ===============================
|
91 |
def parse_with_deepseek(text: str) -> dict:
|
92 |
+
"""Use Deepseek-Coder-V2-Lite-Instruct to extract resume details in JSON format."""
|
93 |
+
# --- UPDATED: Refined prompt for better JSON extraction ---
|
94 |
prompt = f"""
|
95 |
+
Extract the following information from the resume text provided below. Your response should be a valid JSON object.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
**Information to extract:**
|
98 |
+
- **Full Name:** The candidate's full name.
|
99 |
+
- **Email:** The candidate's email address.
|
100 |
+
- **Phone:** The candidate's phone number.
|
101 |
+
- **Skills:** A list of technical and soft skills.
|
102 |
+
- **Education:** A list of academic degrees and institutions.
|
103 |
+
- **Experience:** A list of previous jobs, including company, title, and dates.
|
104 |
|
105 |
+
**Resume Text:**
|
|
|
|
|
|
|
|
|
|