Spaces:
Paused
Paused
Commit
·
308d699
1
Parent(s):
5cee863
full new update
Browse files- Dockerfile +5 -4
- backend/routes/interview_api.py +185 -114
- backend/services/interview_engine.py +185 -40
- backend/templates/interview.html +137 -41
- requirements.txt +7 -1
Dockerfile
CHANGED
@@ -2,8 +2,8 @@ FROM python:3.10-slim
|
|
2 |
|
3 |
# Install OS dependencies
|
4 |
RUN apt-get update && apt-get install -y \
|
5 |
-
ffmpeg libsndfile1 libgl1 git curl \
|
6 |
-
build-essential && \
|
7 |
rm -rf /var/lib/apt/lists/*
|
8 |
|
9 |
# Set working directory
|
@@ -19,8 +19,9 @@ RUN pip install -r requirements.txt
|
|
19 |
# Copy everything to the container
|
20 |
COPY . .
|
21 |
|
22 |
-
# Create necessary directories
|
23 |
-
RUN mkdir -p static/audio temp backend/instance uploads/resumes data/resumes
|
|
|
24 |
|
25 |
# Expose port
|
26 |
EXPOSE 7860
|
|
|
2 |
|
3 |
# Install OS dependencies
|
4 |
RUN apt-get update && apt-get install -y \
|
5 |
+
ffmpeg libsndfile1 libsndfile1-dev libgl1 git curl \
|
6 |
+
build-essential pkg-config && \
|
7 |
rm -rf /var/lib/apt/lists/*
|
8 |
|
9 |
# Set working directory
|
|
|
19 |
# Copy everything to the container
|
20 |
COPY . .
|
21 |
|
22 |
+
# Create necessary directories with proper permissions
|
23 |
+
RUN mkdir -p static/audio temp backend/instance uploads/resumes data/resumes /tmp/audio /tmp/interview_temp && \
|
24 |
+
chmod 777 /tmp/audio /tmp/interview_temp
|
25 |
|
26 |
# Expose port
|
27 |
EXPOSE 7860
|
backend/routes/interview_api.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import uuid
|
3 |
import json
|
|
|
4 |
from flask import Blueprint, request, jsonify, send_file, url_for, current_app
|
5 |
from flask_login import login_required, current_user
|
6 |
from backend.models.database import db, Job, Application
|
@@ -21,140 +22,210 @@ def start_interview():
|
|
21 |
resume/profile and the selected job. Always returns a JSON payload
|
22 |
containing the question text and, if available, a URL to an audio
|
23 |
rendition of the question.
|
24 |
-
|
25 |
-
Previously this endpoint returned a raw audio file when TTS generation
|
26 |
-
succeeded. This prevented the client from displaying the actual question
|
27 |
-
and forced it to fall back to a hard‑coded default. By always returning
|
28 |
-
structured JSON we ensure the UI can show the generated question and
|
29 |
-
optionally play the associated audio.
|
30 |
"""
|
31 |
-
data = request.get_json() or {}
|
32 |
-
job_id = data.get("job_id")
|
33 |
-
|
34 |
-
# Validate the job and the user's application
|
35 |
-
job = Job.query.get_or_404(job_id)
|
36 |
-
application = Application.query.filter_by(
|
37 |
-
user_id=current_user.id,
|
38 |
-
job_id=job_id
|
39 |
-
).first()
|
40 |
-
if not application or not application.extracted_features:
|
41 |
-
return jsonify({"error": "No application/profile data found."}), 400
|
42 |
-
|
43 |
-
# Parse the candidate's profile
|
44 |
-
try:
|
45 |
-
profile = json.loads(application.extracted_features)
|
46 |
-
except Exception:
|
47 |
-
return jsonify({"error": "Invalid profile JSON"}), 500
|
48 |
-
|
49 |
-
# Generate the first question using the LLM
|
50 |
-
question = generate_first_question(profile, job)
|
51 |
-
|
52 |
-
# Attempt to generate a TTS audio file for the question. If successful
|
53 |
-
# we'll return a URL that the client can call to retrieve it; otherwise
|
54 |
-
# audio_url remains None.
|
55 |
-
audio_url = None
|
56 |
try:
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
audio_url = None
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
@interview_api.route("/transcribe_audio", methods=["POST"])
|
74 |
@login_required
|
75 |
def transcribe_audio():
|
76 |
-
|
77 |
-
if not audio_file:
|
78 |
-
return jsonify({"error": "No audio file received."}), 400
|
79 |
-
|
80 |
-
# Use /tmp directory which is writable in Hugging Face Spaces
|
81 |
-
temp_dir = "/tmp/interview_temp"
|
82 |
-
os.makedirs(temp_dir, exist_ok=True)
|
83 |
-
|
84 |
-
filename = f"user_audio_{uuid.uuid4().hex}.webm"
|
85 |
-
path = os.path.join(temp_dir, filename)
|
86 |
-
audio_file.save(path)
|
87 |
-
|
88 |
-
transcript = whisper_stt(path)
|
89 |
-
|
90 |
-
# Clean up
|
91 |
try:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
@interview_api.route("/process_answer", methods=["POST"])
|
99 |
@login_required
|
100 |
def process_answer():
|
101 |
"""
|
102 |
Process a user's answer and return a follow‑up question along with an
|
103 |
-
evaluation. Always responds with JSON
|
104 |
-
|
105 |
-
- success: boolean indicating the operation succeeded
|
106 |
-
- next_question: the text of the next question
|
107 |
-
- audio_url: optional URL to the TTS audio for the next question
|
108 |
-
- evaluation: a dict with a score and feedback
|
109 |
-
- is_complete: boolean indicating if the interview is finished
|
110 |
-
|
111 |
-
Returning JSON even when audio generation succeeds simplifies client
|
112 |
-
handling and prevents errors when parsing the response.
|
113 |
"""
|
114 |
-
data = request.get_json() or {}
|
115 |
-
answer = data.get("answer", "")
|
116 |
-
question_idx = data.get("questionIndex", 0)
|
117 |
-
|
118 |
-
# Construct the next question. In a full implementation this would
|
119 |
-
# depend on the user's answer and job description.
|
120 |
-
next_question_text = f"Follow‑up question {question_idx + 2}: Can you elaborate on your experience with relevant technologies?"
|
121 |
-
|
122 |
-
# Stubbed evaluation of the answer. Replace with a call to evaluate_answer()
|
123 |
-
evaluation_result = {
|
124 |
-
"score": "medium",
|
125 |
-
"feedback": "Good answer, but be more specific."
|
126 |
-
}
|
127 |
-
|
128 |
-
# Determine completion (3 questions in total, zero‑based index)
|
129 |
-
is_complete = question_idx >= 2
|
130 |
-
|
131 |
-
# Try to generate audio for the next question
|
132 |
-
audio_url = None
|
133 |
try:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
audio_url = None
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
@interview_api.route("/audio/<string:filename>", methods=["GET"])
|
153 |
@login_required
|
154 |
def get_audio(filename: str):
|
155 |
"""Serve previously generated TTS audio from the /tmp/audio directory."""
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import uuid
|
3 |
import json
|
4 |
+
import logging
|
5 |
from flask import Blueprint, request, jsonify, send_file, url_for, current_app
|
6 |
from flask_login import login_required, current_user
|
7 |
from backend.models.database import db, Job, Application
|
|
|
22 |
resume/profile and the selected job. Always returns a JSON payload
|
23 |
containing the question text and, if available, a URL to an audio
|
24 |
rendition of the question.
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
+
data = request.get_json() or {}
|
28 |
+
job_id = data.get("job_id")
|
29 |
+
|
30 |
+
# Validate the job and the user's application
|
31 |
+
job = Job.query.get_or_404(job_id)
|
32 |
+
application = Application.query.filter_by(
|
33 |
+
user_id=current_user.id,
|
34 |
+
job_id=job_id
|
35 |
+
).first()
|
36 |
+
|
37 |
+
if not application or not application.extracted_features:
|
38 |
+
return jsonify({"error": "No application/profile data found."}), 400
|
39 |
+
|
40 |
+
# Parse the candidate's profile
|
41 |
+
try:
|
42 |
+
profile = json.loads(application.extracted_features)
|
43 |
+
except Exception as e:
|
44 |
+
logging.error(f"Invalid profile JSON: {e}")
|
45 |
+
return jsonify({"error": "Invalid profile JSON"}), 500
|
46 |
+
|
47 |
+
# Generate the first question using the LLM
|
48 |
+
question = generate_first_question(profile, job)
|
49 |
+
|
50 |
+
if not question:
|
51 |
+
question = "Tell me about yourself and why you're interested in this position."
|
52 |
+
|
53 |
+
# Attempt to generate a TTS audio file for the question
|
54 |
audio_url = None
|
55 |
+
try:
|
56 |
+
audio_dir = "/tmp/audio"
|
57 |
+
os.makedirs(audio_dir, exist_ok=True)
|
58 |
+
filename = f"q_{uuid.uuid4().hex}.wav"
|
59 |
+
audio_path = os.path.join(audio_dir, filename)
|
60 |
+
|
61 |
+
audio_result = edge_tts_to_file_sync(question, audio_path)
|
62 |
+
if audio_result and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000:
|
63 |
+
audio_url = url_for("interview_api.get_audio", filename=filename)
|
64 |
+
logging.info(f"Audio generated successfully: {audio_url}")
|
65 |
+
else:
|
66 |
+
logging.warning("Audio generation failed or file too small")
|
67 |
+
except Exception as e:
|
68 |
+
logging.error(f"Error generating TTS audio: {e}")
|
69 |
+
audio_url = None
|
70 |
+
|
71 |
+
return jsonify({
|
72 |
+
"question": question,
|
73 |
+
"audio_url": audio_url
|
74 |
+
})
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
logging.error(f"Error in start_interview: {e}")
|
78 |
+
return jsonify({"error": "Internal server error"}), 500
|
79 |
|
80 |
|
81 |
@interview_api.route("/transcribe_audio", methods=["POST"])
|
82 |
@login_required
|
83 |
def transcribe_audio():
|
84 |
+
"""Transcribe uploaded audio with better error handling"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
try:
|
86 |
+
audio_file = request.files.get("audio")
|
87 |
+
if not audio_file:
|
88 |
+
return jsonify({"error": "No audio file received."}), 400
|
89 |
+
|
90 |
+
# Check if file has content
|
91 |
+
audio_file.seek(0, 2) # Seek to end
|
92 |
+
file_size = audio_file.tell()
|
93 |
+
audio_file.seek(0) # Seek back to start
|
94 |
+
|
95 |
+
if file_size == 0:
|
96 |
+
logging.error("Received empty audio file")
|
97 |
+
return jsonify({"error": "Empty audio file received."}), 400
|
98 |
+
|
99 |
+
logging.info(f"Received audio file: {file_size} bytes")
|
100 |
+
|
101 |
+
# Use /tmp directory which is writable in Hugging Face Spaces
|
102 |
+
temp_dir = "/tmp/interview_temp"
|
103 |
+
os.makedirs(temp_dir, exist_ok=True)
|
104 |
+
|
105 |
+
# Keep original extension for better compatibility
|
106 |
+
original_filename = audio_file.filename or "recording.webm"
|
107 |
+
file_extension = os.path.splitext(original_filename)[1] or ".webm"
|
108 |
+
filename = f"user_audio_{uuid.uuid4().hex}{file_extension}"
|
109 |
+
path = os.path.join(temp_dir, filename)
|
110 |
+
|
111 |
+
# Save the file
|
112 |
+
audio_file.save(path)
|
113 |
+
|
114 |
+
# Verify file was saved
|
115 |
+
if not os.path.exists(path) or os.path.getsize(path) == 0:
|
116 |
+
logging.error(f"Failed to save audio file or file is empty: {path}")
|
117 |
+
return jsonify({"error": "Failed to save audio file."}), 500
|
118 |
+
|
119 |
+
logging.info(f"Audio file saved: {path} ({os.path.getsize(path)} bytes)")
|
120 |
+
|
121 |
+
# Transcribe the audio
|
122 |
+
transcript = whisper_stt(path)
|
123 |
+
|
124 |
+
# Clean up
|
125 |
+
try:
|
126 |
+
os.remove(path)
|
127 |
+
except Exception as e:
|
128 |
+
logging.warning(f"Could not remove temp file {path}: {e}")
|
129 |
+
|
130 |
+
if not transcript or not transcript.strip():
|
131 |
+
return jsonify({"error": "No speech detected in audio. Please try again."}), 400
|
132 |
+
|
133 |
+
return jsonify({"transcript": transcript})
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
logging.error(f"Error in transcribe_audio: {e}")
|
137 |
+
return jsonify({"error": "Error processing audio. Please try again."}), 500
|
138 |
|
139 |
@interview_api.route("/process_answer", methods=["POST"])
|
140 |
@login_required
|
141 |
def process_answer():
|
142 |
"""
|
143 |
Process a user's answer and return a follow‑up question along with an
|
144 |
+
evaluation. Always responds with JSON.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
try:
|
147 |
+
data = request.get_json() or {}
|
148 |
+
answer = data.get("answer", "").strip()
|
149 |
+
question_idx = data.get("questionIndex", 0)
|
150 |
+
|
151 |
+
if not answer:
|
152 |
+
return jsonify({"error": "No answer provided."}), 400
|
153 |
+
|
154 |
+
# Get the current question for evaluation context
|
155 |
+
current_question = data.get("current_question", "Tell me about yourself")
|
156 |
+
|
157 |
+
# Evaluate the answer
|
158 |
+
evaluation_result = evaluate_answer(current_question, answer)
|
159 |
+
|
160 |
+
# Determine completion (3 questions in total, zero‑based index)
|
161 |
+
is_complete = question_idx >= 2
|
162 |
+
|
163 |
+
next_question_text = None
|
164 |
audio_url = None
|
165 |
+
|
166 |
+
if not is_complete:
|
167 |
+
# Generate next question based on question index
|
168 |
+
if question_idx == 0:
|
169 |
+
next_question_text = "Can you describe a challenging project you've worked on and how you overcame the difficulties?"
|
170 |
+
elif question_idx == 1:
|
171 |
+
next_question_text = "What are your career goals and how does this position align with them?"
|
172 |
+
else:
|
173 |
+
next_question_text = "Do you have any questions about the role or our company?"
|
174 |
+
|
175 |
+
# Try to generate audio for the next question
|
176 |
+
try:
|
177 |
+
audio_dir = "/tmp/audio"
|
178 |
+
os.makedirs(audio_dir, exist_ok=True)
|
179 |
+
filename = f"q_{uuid.uuid4().hex}.wav"
|
180 |
+
audio_path = os.path.join(audio_dir, filename)
|
181 |
+
|
182 |
+
audio_result = edge_tts_to_file_sync(next_question_text, audio_path)
|
183 |
+
if audio_result and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000:
|
184 |
+
audio_url = url_for("interview_api.get_audio", filename=filename)
|
185 |
+
logging.info(f"Next question audio generated: {audio_url}")
|
186 |
+
except Exception as e:
|
187 |
+
logging.error(f"Error generating next question audio: {e}")
|
188 |
+
audio_url = None
|
189 |
+
|
190 |
+
return jsonify({
|
191 |
+
"success": True,
|
192 |
+
"next_question": next_question_text,
|
193 |
+
"audio_url": audio_url,
|
194 |
+
"evaluation": evaluation_result,
|
195 |
+
"is_complete": is_complete
|
196 |
+
})
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
logging.error(f"Error in process_answer: {e}")
|
200 |
+
return jsonify({"error": "Error processing answer. Please try again."}), 500
|
201 |
|
202 |
@interview_api.route("/audio/<string:filename>", methods=["GET"])
|
203 |
@login_required
|
204 |
def get_audio(filename: str):
|
205 |
"""Serve previously generated TTS audio from the /tmp/audio directory."""
|
206 |
+
try:
|
207 |
+
# Sanitize filename to prevent directory traversal
|
208 |
+
safe_name = os.path.basename(filename)
|
209 |
+
if not safe_name.endswith('.wav'):
|
210 |
+
return jsonify({"error": "Invalid audio file format."}), 400
|
211 |
+
|
212 |
+
audio_path = os.path.join("/tmp/audio", safe_name)
|
213 |
+
|
214 |
+
if not os.path.exists(audio_path):
|
215 |
+
logging.warning(f"Audio file not found: {audio_path}")
|
216 |
+
return jsonify({"error": "Audio file not found."}), 404
|
217 |
+
|
218 |
+
if os.path.getsize(audio_path) == 0:
|
219 |
+
logging.warning(f"Audio file is empty: {audio_path}")
|
220 |
+
return jsonify({"error": "Audio file is empty."}), 404
|
221 |
+
|
222 |
+
return send_file(
|
223 |
+
audio_path,
|
224 |
+
mimetype="audio/wav",
|
225 |
+
as_attachment=False,
|
226 |
+
conditional=True # Enable range requests for better audio streaming
|
227 |
+
)
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
logging.error(f"Error serving audio file {filename}: {e}")
|
231 |
+
return jsonify({"error": "Error serving audio file."}), 500
|
backend/services/interview_engine.py
CHANGED
@@ -5,6 +5,8 @@ import edge_tts
|
|
5 |
from faster_whisper import WhisperModel
|
6 |
from langchain_groq import ChatGroq
|
7 |
import logging
|
|
|
|
|
8 |
|
9 |
# Initialize models
|
10 |
chat_groq_api = os.getenv("GROQ_API_KEY")
|
@@ -22,9 +24,15 @@ whisper_model = None
|
|
22 |
def load_whisper_model():
|
23 |
global whisper_model
|
24 |
if whisper_model is None:
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return whisper_model
|
29 |
|
30 |
def generate_first_question(profile, job):
|
@@ -38,115 +46,252 @@ def generate_first_question(profile, job):
|
|
38 |
- Education: {profile.get('education', [])}
|
39 |
|
40 |
Generate an appropriate opening interview question that is professional and relevant.
|
41 |
-
Keep it concise and clear.
|
42 |
"""
|
43 |
|
44 |
response = groq_llm.invoke(prompt)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
except Exception as e:
|
47 |
logging.error(f"Error generating first question: {e}")
|
48 |
return "Tell me about yourself and why you're interested in this position."
|
49 |
|
50 |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
51 |
-
"""Synchronous wrapper for edge-tts"""
|
52 |
try:
|
|
|
|
|
|
|
|
|
|
|
53 |
# Ensure the directory exists and is writable
|
54 |
directory = os.path.dirname(output_path)
|
55 |
if not directory:
|
56 |
-
directory = "/tmp"
|
57 |
output_path = os.path.join(directory, os.path.basename(output_path))
|
58 |
|
59 |
os.makedirs(directory, exist_ok=True)
|
60 |
|
61 |
-
# Test write permissions
|
62 |
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
|
63 |
try:
|
64 |
with open(test_file, 'w') as f:
|
65 |
f.write("test")
|
66 |
os.remove(test_file)
|
|
|
67 |
except (PermissionError, OSError) as e:
|
68 |
logging.error(f"Directory {directory} is not writable: {e}")
|
69 |
# Fallback to /tmp
|
70 |
-
directory = "/tmp"
|
71 |
output_path = os.path.join(directory, os.path.basename(output_path))
|
72 |
os.makedirs(directory, exist_ok=True)
|
73 |
|
74 |
async def generate_audio():
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# Run async function in sync context
|
79 |
try:
|
80 |
loop = asyncio.get_event_loop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
except RuntimeError:
|
|
|
82 |
loop = asyncio.new_event_loop()
|
83 |
asyncio.set_event_loop(loop)
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
# Verify file was created and has content
|
88 |
-
if os.path.exists(output_path)
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
-
logging.error(f"
|
92 |
return None
|
93 |
|
94 |
except Exception as e:
|
95 |
logging.error(f"Error in TTS generation: {e}")
|
96 |
return None
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def whisper_stt(audio_path):
|
99 |
-
"""Speech-to-text using Faster-Whisper"""
|
100 |
try:
|
101 |
if not audio_path or not os.path.exists(audio_path):
|
102 |
logging.error(f"Audio file does not exist: {audio_path}")
|
103 |
return ""
|
104 |
|
105 |
# Check if file has content
|
106 |
-
|
|
|
107 |
logging.error(f"Audio file is empty: {audio_path}")
|
108 |
return ""
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
model = load_whisper_model()
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
except Exception as e:
|
115 |
logging.error(f"Error in STT: {e}")
|
116 |
return ""
|
117 |
|
118 |
-
def evaluate_answer(question, answer,
|
119 |
-
"""Evaluate candidate's answer"""
|
120 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
prompt = f"""
|
122 |
You are evaluating a candidate's answer for a {seniority} {job_role} position.
|
123 |
|
124 |
Question: {question}
|
125 |
Candidate Answer: {answer}
|
126 |
-
Reference Answer: {ref_answer}
|
127 |
|
128 |
Evaluate based on technical correctness, clarity, and relevance.
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
"""
|
136 |
|
137 |
response = groq_llm.invoke(prompt)
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
else:
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
except Exception as e:
|
147 |
logging.error(f"Error evaluating answer: {e}")
|
148 |
return {
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"Improvements": ["Please be more specific"]
|
152 |
}
|
|
|
5 |
from faster_whisper import WhisperModel
|
6 |
from langchain_groq import ChatGroq
|
7 |
import logging
|
8 |
+
import tempfile
|
9 |
+
import shutil
|
10 |
|
11 |
# Initialize models
|
12 |
chat_groq_api = os.getenv("GROQ_API_KEY")
|
|
|
24 |
def load_whisper_model():
|
25 |
global whisper_model
|
26 |
if whisper_model is None:
|
27 |
+
try:
|
28 |
+
device = "cuda" if os.system("nvidia-smi") == 0 else "cpu"
|
29 |
+
compute_type = "float16" if device == "cuda" else "int8"
|
30 |
+
whisper_model = WhisperModel("base", device=device, compute_type=compute_type)
|
31 |
+
logging.info(f"Whisper model loaded on {device} with {compute_type}")
|
32 |
+
except Exception as e:
|
33 |
+
logging.error(f"Error loading Whisper model: {e}")
|
34 |
+
# Fallback to CPU
|
35 |
+
whisper_model = WhisperModel("base", device="cpu", compute_type="int8")
|
36 |
return whisper_model
|
37 |
|
38 |
def generate_first_question(profile, job):
|
|
|
46 |
- Education: {profile.get('education', [])}
|
47 |
|
48 |
Generate an appropriate opening interview question that is professional and relevant.
|
49 |
+
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
|
50 |
"""
|
51 |
|
52 |
response = groq_llm.invoke(prompt)
|
53 |
+
|
54 |
+
# Fix: Handle AIMessage object properly
|
55 |
+
if hasattr(response, 'content'):
|
56 |
+
question = response.content.strip()
|
57 |
+
elif isinstance(response, str):
|
58 |
+
question = response.strip()
|
59 |
+
else:
|
60 |
+
question = str(response).strip()
|
61 |
+
|
62 |
+
# Ensure we have a valid question
|
63 |
+
if not question or len(question) < 10:
|
64 |
+
question = "Tell me about yourself and why you're interested in this position."
|
65 |
+
|
66 |
+
logging.info(f"Generated question: {question}")
|
67 |
+
return question
|
68 |
+
|
69 |
except Exception as e:
|
70 |
logging.error(f"Error generating first question: {e}")
|
71 |
return "Tell me about yourself and why you're interested in this position."
|
72 |
|
73 |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
74 |
+
"""Synchronous wrapper for edge-tts with better error handling"""
|
75 |
try:
|
76 |
+
# Ensure text is not empty
|
77 |
+
if not text or not text.strip():
|
78 |
+
logging.error("Empty text provided for TTS")
|
79 |
+
return None
|
80 |
+
|
81 |
# Ensure the directory exists and is writable
|
82 |
directory = os.path.dirname(output_path)
|
83 |
if not directory:
|
84 |
+
directory = "/tmp/audio"
|
85 |
output_path = os.path.join(directory, os.path.basename(output_path))
|
86 |
|
87 |
os.makedirs(directory, exist_ok=True)
|
88 |
|
89 |
+
# Test write permissions with a temporary file
|
90 |
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
|
91 |
try:
|
92 |
with open(test_file, 'w') as f:
|
93 |
f.write("test")
|
94 |
os.remove(test_file)
|
95 |
+
logging.info(f"Directory {directory} is writable")
|
96 |
except (PermissionError, OSError) as e:
|
97 |
logging.error(f"Directory {directory} is not writable: {e}")
|
98 |
# Fallback to /tmp
|
99 |
+
directory = "/tmp/audio"
|
100 |
output_path = os.path.join(directory, os.path.basename(output_path))
|
101 |
os.makedirs(directory, exist_ok=True)
|
102 |
|
103 |
async def generate_audio():
|
104 |
+
try:
|
105 |
+
communicate = edge_tts.Communicate(text, voice)
|
106 |
+
await communicate.save(output_path)
|
107 |
+
logging.info(f"TTS audio saved to: {output_path}")
|
108 |
+
except Exception as e:
|
109 |
+
logging.error(f"Error in async TTS generation: {e}")
|
110 |
+
raise
|
111 |
|
112 |
# Run async function in sync context
|
113 |
try:
|
114 |
loop = asyncio.get_event_loop()
|
115 |
+
if loop.is_running():
|
116 |
+
# If loop is already running, create a new one in a thread
|
117 |
+
import threading
|
118 |
+
import concurrent.futures
|
119 |
+
|
120 |
+
def run_in_thread():
|
121 |
+
new_loop = asyncio.new_event_loop()
|
122 |
+
asyncio.set_event_loop(new_loop)
|
123 |
+
try:
|
124 |
+
new_loop.run_until_complete(generate_audio())
|
125 |
+
finally:
|
126 |
+
new_loop.close()
|
127 |
+
|
128 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
129 |
+
future = executor.submit(run_in_thread)
|
130 |
+
future.result(timeout=30) # 30 second timeout
|
131 |
+
else:
|
132 |
+
loop.run_until_complete(generate_audio())
|
133 |
except RuntimeError:
|
134 |
+
# No event loop exists
|
135 |
loop = asyncio.new_event_loop()
|
136 |
asyncio.set_event_loop(loop)
|
137 |
+
try:
|
138 |
+
loop.run_until_complete(generate_audio())
|
139 |
+
finally:
|
140 |
+
loop.close()
|
141 |
|
142 |
# Verify file was created and has content
|
143 |
+
if os.path.exists(output_path):
|
144 |
+
file_size = os.path.getsize(output_path)
|
145 |
+
if file_size > 1000: # At least 1KB for a valid audio file
|
146 |
+
logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
|
147 |
+
return output_path
|
148 |
+
else:
|
149 |
+
logging.error(f"TTS file is too small: {output_path} ({file_size} bytes)")
|
150 |
+
return None
|
151 |
else:
|
152 |
+
logging.error(f"TTS file was not created: {output_path}")
|
153 |
return None
|
154 |
|
155 |
except Exception as e:
|
156 |
logging.error(f"Error in TTS generation: {e}")
|
157 |
return None
|
158 |
|
159 |
+
def convert_webm_to_wav(webm_path, wav_path):
|
160 |
+
"""Convert WebM audio to WAV using ffmpeg if available"""
|
161 |
+
try:
|
162 |
+
import subprocess
|
163 |
+
result = subprocess.run([
|
164 |
+
'ffmpeg', '-i', webm_path, '-ar', '16000', '-ac', '1', '-y', wav_path
|
165 |
+
], capture_output=True, text=True, timeout=30)
|
166 |
+
|
167 |
+
if result.returncode == 0 and os.path.exists(wav_path) and os.path.getsize(wav_path) > 0:
|
168 |
+
logging.info(f"Successfully converted {webm_path} to {wav_path}")
|
169 |
+
return wav_path
|
170 |
+
else:
|
171 |
+
logging.error(f"FFmpeg conversion failed: {result.stderr}")
|
172 |
+
return None
|
173 |
+
except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
|
174 |
+
logging.error(f"Error converting audio: {e}")
|
175 |
+
return None
|
176 |
+
|
177 |
def whisper_stt(audio_path):
|
178 |
+
"""Speech-to-text using Faster-Whisper with better error handling"""
|
179 |
try:
|
180 |
if not audio_path or not os.path.exists(audio_path):
|
181 |
logging.error(f"Audio file does not exist: {audio_path}")
|
182 |
return ""
|
183 |
|
184 |
# Check if file has content
|
185 |
+
file_size = os.path.getsize(audio_path)
|
186 |
+
if file_size == 0:
|
187 |
logging.error(f"Audio file is empty: {audio_path}")
|
188 |
return ""
|
189 |
|
190 |
+
logging.info(f"Processing audio file: {audio_path} ({file_size} bytes)")
|
191 |
+
|
192 |
+
# If the file is WebM, try to convert it to WAV
|
193 |
+
if audio_path.endswith('.webm'):
|
194 |
+
wav_path = audio_path.replace('.webm', '.wav')
|
195 |
+
converted_path = convert_webm_to_wav(audio_path, wav_path)
|
196 |
+
if converted_path:
|
197 |
+
audio_path = converted_path
|
198 |
+
else:
|
199 |
+
logging.warning("Could not convert WebM to WAV, trying with original file")
|
200 |
+
|
201 |
model = load_whisper_model()
|
202 |
+
|
203 |
+
# Add timeout and better error handling
|
204 |
+
try:
|
205 |
+
segments, info = model.transcribe(
|
206 |
+
audio_path,
|
207 |
+
language="en", # Specify language for better performance
|
208 |
+
task="transcribe",
|
209 |
+
vad_filter=True, # Voice activity detection
|
210 |
+
vad_parameters=dict(min_silence_duration_ms=500)
|
211 |
+
)
|
212 |
+
|
213 |
+
transcript_parts = []
|
214 |
+
for segment in segments:
|
215 |
+
if hasattr(segment, 'text') and segment.text.strip():
|
216 |
+
transcript_parts.append(segment.text.strip())
|
217 |
+
|
218 |
+
transcript = " ".join(transcript_parts)
|
219 |
+
|
220 |
+
if transcript:
|
221 |
+
logging.info(f"Transcription successful: '{transcript[:100]}...'")
|
222 |
+
else:
|
223 |
+
logging.warning("No speech detected in audio file")
|
224 |
+
|
225 |
+
return transcript.strip()
|
226 |
+
|
227 |
+
except Exception as e:
|
228 |
+
logging.error(f"Error during transcription: {e}")
|
229 |
+
return ""
|
230 |
+
|
231 |
except Exception as e:
|
232 |
logging.error(f"Error in STT: {e}")
|
233 |
return ""
|
234 |
|
235 |
+
def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
|
236 |
+
"""Evaluate candidate's answer with better error handling"""
|
237 |
try:
|
238 |
+
if not answer or not answer.strip():
|
239 |
+
return {
|
240 |
+
"score": "Poor",
|
241 |
+
"feedback": "No answer provided."
|
242 |
+
}
|
243 |
+
|
244 |
prompt = f"""
|
245 |
You are evaluating a candidate's answer for a {seniority} {job_role} position.
|
246 |
|
247 |
Question: {question}
|
248 |
Candidate Answer: {answer}
|
|
|
249 |
|
250 |
Evaluate based on technical correctness, clarity, and relevance.
|
251 |
+
Provide a brief evaluation in 1-2 sentences.
|
252 |
+
|
253 |
+
Rate the answer as one of: Poor, Medium, Good, Excellent
|
254 |
+
|
255 |
+
Respond in this exact format:
|
256 |
+
Score: [Poor/Medium/Good/Excellent]
|
257 |
+
Feedback: [Your brief feedback here]
|
258 |
"""
|
259 |
|
260 |
response = groq_llm.invoke(prompt)
|
261 |
+
|
262 |
+
# Handle AIMessage object properly
|
263 |
+
if hasattr(response, 'content'):
|
264 |
+
response_text = response.content.strip()
|
265 |
+
elif isinstance(response, str):
|
266 |
+
response_text = response.strip()
|
267 |
else:
|
268 |
+
response_text = str(response).strip()
|
269 |
+
|
270 |
+
# Parse the response
|
271 |
+
lines = response_text.split('\n')
|
272 |
+
score = "Medium" # default
|
273 |
+
feedback = "Good answer, but could be more detailed." # default
|
274 |
+
|
275 |
+
for line in lines:
|
276 |
+
line = line.strip()
|
277 |
+
if line.startswith('Score:'):
|
278 |
+
score = line.replace('Score:', '').strip()
|
279 |
+
elif line.startswith('Feedback:'):
|
280 |
+
feedback = line.replace('Feedback:', '').strip()
|
281 |
+
|
282 |
+
# Ensure score is valid
|
283 |
+
valid_scores = ["Poor", "Medium", "Good", "Excellent"]
|
284 |
+
if score not in valid_scores:
|
285 |
+
score = "Medium"
|
286 |
+
|
287 |
+
return {
|
288 |
+
"score": score,
|
289 |
+
"feedback": feedback
|
290 |
+
}
|
291 |
+
|
292 |
except Exception as e:
|
293 |
logging.error(f"Error evaluating answer: {e}")
|
294 |
return {
|
295 |
+
"score": "Medium",
|
296 |
+
"feedback": "Unable to evaluate answer at this time."
|
|
|
297 |
}
|
backend/templates/interview.html
CHANGED
@@ -498,6 +498,7 @@
|
|
498 |
this.isRecording = false;
|
499 |
this.mediaRecorder = null;
|
500 |
this.audioChunks = [];
|
|
|
501 |
this.interviewData = {
|
502 |
questions: [],
|
503 |
answers: [],
|
@@ -525,10 +526,23 @@
|
|
525 |
}
|
526 |
|
527 |
bindEvents() {
|
528 |
-
|
529 |
-
this.micButton.addEventListener('
|
530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
|
|
|
532 |
this.micButton.addEventListener('touchstart', (e) => {
|
533 |
e.preventDefault();
|
534 |
this.startRecording();
|
@@ -565,6 +579,7 @@
|
|
565 |
|
566 |
async initializeInterview() {
|
567 |
try {
|
|
|
568 |
const response = await fetch('/api/start_interview', {
|
569 |
method: 'POST',
|
570 |
headers: {
|
@@ -574,26 +589,29 @@
|
|
574 |
});
|
575 |
|
576 |
if (!response.ok) {
|
|
|
|
|
577 |
throw new Error(`HTTP error! status: ${response.status}`);
|
578 |
}
|
579 |
|
580 |
-
// Always expect a JSON payload describing the question and optional audio URL
|
581 |
const data = await response.json();
|
|
|
|
|
582 |
if (data.error) {
|
583 |
this.showError(data.error);
|
584 |
return;
|
585 |
}
|
586 |
|
587 |
-
//
|
|
|
588 |
this.displayQuestion(data.question, data.audio_url);
|
589 |
this.interviewData.questions.push(data.question);
|
590 |
} catch (error) {
|
591 |
console.error('Error starting interview:', error);
|
592 |
-
this.showError('Failed to start interview. Please try again.');
|
593 |
}
|
594 |
}
|
595 |
|
596 |
-
|
597 |
displayQuestion(question, audioUrl = null) {
|
598 |
// Remove loading message
|
599 |
const loadingMsg = document.getElementById('loadingMessage');
|
@@ -605,11 +623,11 @@
|
|
605 |
const messageDiv = document.createElement('div');
|
606 |
messageDiv.className = 'ai-message';
|
607 |
messageDiv.innerHTML = `
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
this.chatArea.appendChild(messageDiv);
|
614 |
this.chatArea.scrollTop = this.chatArea.scrollHeight;
|
615 |
|
@@ -618,17 +636,25 @@
|
|
618 |
|
619 |
// Play audio if available
|
620 |
if (audioUrl) {
|
|
|
621 |
this.playQuestionAudio(audioUrl);
|
622 |
} else {
|
623 |
-
|
624 |
setTimeout(() => this.enableControls(), 1000);
|
625 |
}
|
626 |
}
|
627 |
|
628 |
playQuestionAudio(audioUrl) {
|
|
|
|
|
|
|
|
|
629 |
this.ttsAudio.src = audioUrl;
|
|
|
|
|
630 |
this.ttsAudio.play().catch(error => {
|
631 |
console.error('Audio play error:', error);
|
|
|
632 |
this.enableControls();
|
633 |
});
|
634 |
}
|
@@ -637,31 +663,61 @@
|
|
637 |
this.micButton.disabled = false;
|
638 |
this.recordingStatus.textContent = 'Click and hold to record your answer';
|
639 |
|
640 |
-
// Remove talking animation from
|
641 |
const avatars = this.chatArea.querySelectorAll('.ai-avatar');
|
642 |
avatars.forEach(avatar => avatar.classList.remove('talking'));
|
643 |
}
|
644 |
|
645 |
async startRecording() {
|
646 |
-
if (this.isRecording) return;
|
647 |
|
648 |
try {
|
649 |
-
|
650 |
-
|
651 |
-
|
|
|
|
|
|
|
|
|
|
|
652 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
this.audioChunks = [];
|
654 |
|
655 |
this.mediaRecorder.ondataavailable = (event) => {
|
656 |
-
|
|
|
|
|
|
|
657 |
};
|
658 |
|
659 |
this.mediaRecorder.onstop = () => {
|
|
|
|
|
660 |
this.processRecording();
|
|
|
|
|
|
|
|
|
|
|
661 |
stream.getTracks().forEach(track => track.stop());
|
662 |
};
|
663 |
|
664 |
-
this.mediaRecorder.start();
|
665 |
this.isRecording = true;
|
666 |
|
667 |
// Update UI
|
@@ -672,12 +728,14 @@
|
|
672 |
} catch (error) {
|
673 |
console.error('Error starting recording:', error);
|
674 |
this.recordingStatus.textContent = 'Microphone access denied. Please allow microphone access and try again.';
|
|
|
675 |
}
|
676 |
}
|
677 |
|
678 |
stopRecording() {
|
679 |
if (!this.isRecording || !this.mediaRecorder) return;
|
680 |
|
|
|
681 |
this.mediaRecorder.stop();
|
682 |
this.isRecording = false;
|
683 |
|
@@ -685,27 +743,50 @@
|
|
685 |
this.micButton.classList.remove('recording');
|
686 |
this.micIcon.textContent = '🎤';
|
687 |
this.recordingStatus.textContent = 'Processing audio...';
|
|
|
688 |
}
|
689 |
|
690 |
async processRecording() {
|
691 |
-
const audioBlob = new Blob(this.audioChunks, { type: 'audio/wav' });
|
692 |
-
const formData = new FormData();
|
693 |
-
formData.append('audio', audioBlob, 'recording.wav');
|
694 |
-
|
695 |
try {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
const response = await fetch('/api/transcribe_audio', {
|
697 |
method: 'POST',
|
698 |
body: formData
|
699 |
});
|
700 |
|
701 |
if (!response.ok) {
|
|
|
|
|
702 |
throw new Error(`HTTP error! status: ${response.status}`);
|
703 |
}
|
704 |
|
705 |
const data = await response.json();
|
|
|
706 |
|
707 |
if (data.error) {
|
708 |
this.recordingStatus.textContent = data.error;
|
|
|
709 |
return;
|
710 |
}
|
711 |
|
@@ -714,13 +795,16 @@
|
|
714 |
this.confirmButton.disabled = false;
|
715 |
this.retryButton.style.display = 'inline-flex';
|
716 |
this.recordingStatus.textContent = 'Transcription complete. Review and confirm your answer.';
|
|
|
717 |
} else {
|
718 |
this.recordingStatus.textContent = 'No speech detected. Please try recording again.';
|
|
|
719 |
}
|
720 |
|
721 |
} catch (error) {
|
722 |
console.error('Error processing recording:', error);
|
723 |
this.recordingStatus.textContent = 'Error processing audio. Please try again.';
|
|
|
724 |
}
|
725 |
}
|
726 |
|
@@ -729,12 +813,15 @@
|
|
729 |
this.confirmButton.disabled = true;
|
730 |
this.retryButton.style.display = 'none';
|
731 |
this.recordingStatus.textContent = 'Click and hold to record your answer';
|
|
|
732 |
}
|
733 |
|
734 |
async submitAnswer() {
|
735 |
const answer = this.transcriptArea.textContent.trim();
|
736 |
if (!answer) return;
|
737 |
|
|
|
|
|
738 |
// Show loading state
|
739 |
this.confirmButton.disabled = true;
|
740 |
this.confirmLoading.style.display = 'inline-block';
|
@@ -751,18 +838,22 @@
|
|
751 |
},
|
752 |
body: JSON.stringify({
|
753 |
answer: answer,
|
754 |
-
questionIndex: this.currentQuestionIndex
|
|
|
755 |
})
|
756 |
});
|
757 |
|
758 |
if (!response.ok) {
|
|
|
|
|
759 |
throw new Error(`HTTP error! status: ${response.status}`);
|
760 |
}
|
761 |
|
762 |
-
// Parse JSON response
|
763 |
const data = await response.json();
|
|
|
|
|
764 |
if (!data.success) {
|
765 |
-
this.showError('Failed to process answer. Please try again.');
|
766 |
return;
|
767 |
}
|
768 |
|
@@ -771,11 +862,12 @@
|
|
771 |
this.interviewData.evaluations.push(data.evaluation || {});
|
772 |
|
773 |
if (data.is_complete) {
|
774 |
-
|
775 |
this.showInterviewSummary();
|
776 |
} else {
|
777 |
-
|
778 |
this.currentQuestionIndex++;
|
|
|
779 |
this.displayQuestion(data.next_question, data.audio_url);
|
780 |
this.interviewData.questions.push(data.next_question);
|
781 |
this.resetForNextQuestion();
|
@@ -794,10 +886,10 @@
|
|
794 |
const messageDiv = document.createElement('div');
|
795 |
messageDiv.className = 'user-message';
|
796 |
messageDiv.innerHTML = `
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
this.chatArea.appendChild(messageDiv);
|
802 |
this.chatArea.scrollTop = this.chatArea.scrollHeight;
|
803 |
}
|
@@ -807,6 +899,7 @@
|
|
807 |
this.confirmButton.disabled = true;
|
808 |
this.retryButton.style.display = 'none';
|
809 |
this.recordingStatus.textContent = 'Wait for the next question...';
|
|
|
810 |
this.micButton.disabled = true;
|
811 |
}
|
812 |
|
@@ -819,14 +912,14 @@
|
|
819 |
const evaluation = this.interviewData.evaluations[index] || {};
|
820 |
|
821 |
summaryHtml += `
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
});
|
831 |
|
832 |
summaryContent.innerHTML = summaryHtml;
|
@@ -837,6 +930,8 @@
|
|
837 |
}
|
838 |
|
839 |
showError(message) {
|
|
|
|
|
840 |
// Create error message element
|
841 |
const errorDiv = document.createElement('div');
|
842 |
errorDiv.className = 'error-message';
|
@@ -864,6 +959,7 @@
|
|
864 |
|
865 |
// Initialize the interview when page loads
|
866 |
document.addEventListener('DOMContentLoaded', () => {
|
|
|
867 |
new AIInterviewer();
|
868 |
});
|
869 |
|
|
|
498 |
this.isRecording = false;
|
499 |
this.mediaRecorder = null;
|
500 |
this.audioChunks = [];
|
501 |
+
this.currentQuestion = "";
|
502 |
this.interviewData = {
|
503 |
questions: [],
|
504 |
answers: [],
|
|
|
526 |
}
|
527 |
|
528 |
bindEvents() {
|
529 |
+
// Mouse events for desktop
|
530 |
+
this.micButton.addEventListener('mousedown', (e) => {
|
531 |
+
e.preventDefault();
|
532 |
+
this.startRecording();
|
533 |
+
});
|
534 |
+
|
535 |
+
this.micButton.addEventListener('mouseup', (e) => {
|
536 |
+
e.preventDefault();
|
537 |
+
this.stopRecording();
|
538 |
+
});
|
539 |
+
|
540 |
+
this.micButton.addEventListener('mouseleave', (e) => {
|
541 |
+
e.preventDefault();
|
542 |
+
this.stopRecording();
|
543 |
+
});
|
544 |
|
545 |
+
// Touch events for mobile
|
546 |
this.micButton.addEventListener('touchstart', (e) => {
|
547 |
e.preventDefault();
|
548 |
this.startRecording();
|
|
|
579 |
|
580 |
async initializeInterview() {
|
581 |
try {
|
582 |
+
console.log('Starting interview...');
|
583 |
const response = await fetch('/api/start_interview', {
|
584 |
method: 'POST',
|
585 |
headers: {
|
|
|
589 |
});
|
590 |
|
591 |
if (!response.ok) {
|
592 |
+
const errorText = await response.text();
|
593 |
+
console.error('Server response:', response.status, errorText);
|
594 |
throw new Error(`HTTP error! status: ${response.status}`);
|
595 |
}
|
596 |
|
|
|
597 |
const data = await response.json();
|
598 |
+
console.log('Received interview data:', data);
|
599 |
+
|
600 |
if (data.error) {
|
601 |
this.showError(data.error);
|
602 |
return;
|
603 |
}
|
604 |
|
605 |
+
// Store the current question for evaluation
|
606 |
+
this.currentQuestion = data.question;
|
607 |
this.displayQuestion(data.question, data.audio_url);
|
608 |
this.interviewData.questions.push(data.question);
|
609 |
} catch (error) {
|
610 |
console.error('Error starting interview:', error);
|
611 |
+
this.showError('Failed to start interview. Please check your connection and try again.');
|
612 |
}
|
613 |
}
|
614 |
|
|
|
615 |
displayQuestion(question, audioUrl = null) {
|
616 |
// Remove loading message
|
617 |
const loadingMsg = document.getElementById('loadingMessage');
|
|
|
623 |
const messageDiv = document.createElement('div');
|
624 |
messageDiv.className = 'ai-message';
|
625 |
messageDiv.innerHTML = `
|
626 |
+
<div class="ai-avatar">AI</div>
|
627 |
+
<div class="message-bubble">
|
628 |
+
<p>${question}</p>
|
629 |
+
</div>
|
630 |
+
`;
|
631 |
this.chatArea.appendChild(messageDiv);
|
632 |
this.chatArea.scrollTop = this.chatArea.scrollHeight;
|
633 |
|
|
|
636 |
|
637 |
// Play audio if available
|
638 |
if (audioUrl) {
|
639 |
+
console.log('Playing audio:', audioUrl);
|
640 |
this.playQuestionAudio(audioUrl);
|
641 |
} else {
|
642 |
+
console.log('No audio URL provided, enabling controls');
|
643 |
setTimeout(() => this.enableControls(), 1000);
|
644 |
}
|
645 |
}
|
646 |
|
647 |
playQuestionAudio(audioUrl) {
|
648 |
+
// Add talking animation immediately
|
649 |
+
const avatars = this.chatArea.querySelectorAll('.ai-avatar');
|
650 |
+
avatars.forEach(avatar => avatar.classList.add('talking'));
|
651 |
+
|
652 |
this.ttsAudio.src = audioUrl;
|
653 |
+
this.ttsAudio.load(); // Ensure audio is loaded
|
654 |
+
|
655 |
this.ttsAudio.play().catch(error => {
|
656 |
console.error('Audio play error:', error);
|
657 |
+
avatars.forEach(avatar => avatar.classList.remove('talking'));
|
658 |
this.enableControls();
|
659 |
});
|
660 |
}
|
|
|
663 |
this.micButton.disabled = false;
|
664 |
this.recordingStatus.textContent = 'Click and hold to record your answer';
|
665 |
|
666 |
+
// Remove talking animation from all avatars
|
667 |
const avatars = this.chatArea.querySelectorAll('.ai-avatar');
|
668 |
avatars.forEach(avatar => avatar.classList.remove('talking'));
|
669 |
}
|
670 |
|
671 |
async startRecording() {
|
672 |
+
if (this.isRecording || this.micButton.disabled) return;
|
673 |
|
674 |
try {
|
675 |
+
console.log('Starting recording...');
|
676 |
+
const stream = await navigator.mediaDevices.getUserMedia({
|
677 |
+
audio: {
|
678 |
+
echoCancellation: true,
|
679 |
+
noiseSuppression: true,
|
680 |
+
autoGainControl: true,
|
681 |
+
sampleRate: 16000
|
682 |
+
}
|
683 |
});
|
684 |
+
|
685 |
+
// Use webm format with opus codec for better compatibility
|
686 |
+
const options = {
|
687 |
+
mimeType: 'audio/webm;codecs=opus'
|
688 |
+
};
|
689 |
+
|
690 |
+
// Fallback for browsers that don't support webm
|
691 |
+
if (!MediaRecorder.isTypeSupported(options.mimeType)) {
|
692 |
+
options.mimeType = 'audio/webm';
|
693 |
+
}
|
694 |
+
if (!MediaRecorder.isTypeSupported(options.mimeType)) {
|
695 |
+
delete options.mimeType;
|
696 |
+
}
|
697 |
+
|
698 |
+
this.mediaRecorder = new MediaRecorder(stream, options);
|
699 |
this.audioChunks = [];
|
700 |
|
701 |
this.mediaRecorder.ondataavailable = (event) => {
|
702 |
+
if (event.data.size > 0) {
|
703 |
+
this.audioChunks.push(event.data);
|
704 |
+
console.log('Audio chunk received:', event.data.size, 'bytes');
|
705 |
+
}
|
706 |
};
|
707 |
|
708 |
this.mediaRecorder.onstop = () => {
|
709 |
+
console.log('Recording stopped, processing...');
|
710 |
+
stream.getTracks().forEach(track => track.stop());
|
711 |
this.processRecording();
|
712 |
+
};
|
713 |
+
|
714 |
+
this.mediaRecorder.onerror = (event) => {
|
715 |
+
console.error('MediaRecorder error:', event.error);
|
716 |
+
this.recordingStatus.textContent = 'Recording error. Please try again.';
|
717 |
stream.getTracks().forEach(track => track.stop());
|
718 |
};
|
719 |
|
720 |
+
this.mediaRecorder.start(1000); // Collect data every second
|
721 |
this.isRecording = true;
|
722 |
|
723 |
// Update UI
|
|
|
728 |
} catch (error) {
|
729 |
console.error('Error starting recording:', error);
|
730 |
this.recordingStatus.textContent = 'Microphone access denied. Please allow microphone access and try again.';
|
731 |
+
this.recordingStatus.style.color = '#ff4757';
|
732 |
}
|
733 |
}
|
734 |
|
735 |
stopRecording() {
|
736 |
if (!this.isRecording || !this.mediaRecorder) return;
|
737 |
|
738 |
+
console.log('Stopping recording...');
|
739 |
this.mediaRecorder.stop();
|
740 |
this.isRecording = false;
|
741 |
|
|
|
743 |
this.micButton.classList.remove('recording');
|
744 |
this.micIcon.textContent = '🎤';
|
745 |
this.recordingStatus.textContent = 'Processing audio...';
|
746 |
+
this.recordingStatus.style.color = '#666';
|
747 |
}
|
748 |
|
749 |
async processRecording() {
|
|
|
|
|
|
|
|
|
750 |
try {
|
751 |
+
if (this.audioChunks.length === 0) {
|
752 |
+
console.error('No audio chunks recorded');
|
753 |
+
this.recordingStatus.textContent = 'No audio recorded. Please try again.';
|
754 |
+
return;
|
755 |
+
}
|
756 |
+
|
757 |
+
console.log('Processing', this.audioChunks.length, 'audio chunks');
|
758 |
+
|
759 |
+
// Create blob from audio chunks
|
760 |
+
const audioBlob = new Blob(this.audioChunks, { type: 'audio/webm' });
|
761 |
+
console.log('Created audio blob:', audioBlob.size, 'bytes');
|
762 |
+
|
763 |
+
if (audioBlob.size === 0) {
|
764 |
+
console.error('Audio blob is empty');
|
765 |
+
this.recordingStatus.textContent = 'No audio data captured. Please try again.';
|
766 |
+
return;
|
767 |
+
}
|
768 |
+
|
769 |
+
const formData = new FormData();
|
770 |
+
formData.append('audio', audioBlob, 'recording.webm');
|
771 |
+
|
772 |
+
console.log('Sending audio for transcription...');
|
773 |
const response = await fetch('/api/transcribe_audio', {
|
774 |
method: 'POST',
|
775 |
body: formData
|
776 |
});
|
777 |
|
778 |
if (!response.ok) {
|
779 |
+
const errorText = await response.text();
|
780 |
+
console.error('Transcription error:', response.status, errorText);
|
781 |
throw new Error(`HTTP error! status: ${response.status}`);
|
782 |
}
|
783 |
|
784 |
const data = await response.json();
|
785 |
+
console.log('Transcription response:', data);
|
786 |
|
787 |
if (data.error) {
|
788 |
this.recordingStatus.textContent = data.error;
|
789 |
+
this.recordingStatus.style.color = '#ff4757';
|
790 |
return;
|
791 |
}
|
792 |
|
|
|
795 |
this.confirmButton.disabled = false;
|
796 |
this.retryButton.style.display = 'inline-flex';
|
797 |
this.recordingStatus.textContent = 'Transcription complete. Review and confirm your answer.';
|
798 |
+
this.recordingStatus.style.color = '#4CAF50';
|
799 |
} else {
|
800 |
this.recordingStatus.textContent = 'No speech detected. Please try recording again.';
|
801 |
+
this.recordingStatus.style.color = '#ff4757';
|
802 |
}
|
803 |
|
804 |
} catch (error) {
|
805 |
console.error('Error processing recording:', error);
|
806 |
this.recordingStatus.textContent = 'Error processing audio. Please try again.';
|
807 |
+
this.recordingStatus.style.color = '#ff4757';
|
808 |
}
|
809 |
}
|
810 |
|
|
|
813 |
this.confirmButton.disabled = true;
|
814 |
this.retryButton.style.display = 'none';
|
815 |
this.recordingStatus.textContent = 'Click and hold to record your answer';
|
816 |
+
this.recordingStatus.style.color = '#666';
|
817 |
}
|
818 |
|
819 |
async submitAnswer() {
|
820 |
const answer = this.transcriptArea.textContent.trim();
|
821 |
if (!answer) return;
|
822 |
|
823 |
+
console.log('Submitting answer:', answer);
|
824 |
+
|
825 |
// Show loading state
|
826 |
this.confirmButton.disabled = true;
|
827 |
this.confirmLoading.style.display = 'inline-block';
|
|
|
838 |
},
|
839 |
body: JSON.stringify({
|
840 |
answer: answer,
|
841 |
+
questionIndex: this.currentQuestionIndex,
|
842 |
+
current_question: this.currentQuestion
|
843 |
})
|
844 |
});
|
845 |
|
846 |
if (!response.ok) {
|
847 |
+
const errorText = await response.text();
|
848 |
+
console.error('Process answer error:', response.status, errorText);
|
849 |
throw new Error(`HTTP error! status: ${response.status}`);
|
850 |
}
|
851 |
|
|
|
852 |
const data = await response.json();
|
853 |
+
console.log('Process answer response:', data);
|
854 |
+
|
855 |
if (!data.success) {
|
856 |
+
this.showError(data.error || 'Failed to process answer. Please try again.');
|
857 |
return;
|
858 |
}
|
859 |
|
|
|
862 |
this.interviewData.evaluations.push(data.evaluation || {});
|
863 |
|
864 |
if (data.is_complete) {
|
865 |
+
console.log('Interview completed');
|
866 |
this.showInterviewSummary();
|
867 |
} else {
|
868 |
+
console.log('Moving to next question');
|
869 |
this.currentQuestionIndex++;
|
870 |
+
this.currentQuestion = data.next_question;
|
871 |
this.displayQuestion(data.next_question, data.audio_url);
|
872 |
this.interviewData.questions.push(data.next_question);
|
873 |
this.resetForNextQuestion();
|
|
|
886 |
const messageDiv = document.createElement('div');
|
887 |
messageDiv.className = 'user-message';
|
888 |
messageDiv.innerHTML = `
|
889 |
+
<div class="user-bubble">
|
890 |
+
<p>${message}</p>
|
891 |
+
</div>
|
892 |
+
`;
|
893 |
this.chatArea.appendChild(messageDiv);
|
894 |
this.chatArea.scrollTop = this.chatArea.scrollHeight;
|
895 |
}
|
|
|
899 |
this.confirmButton.disabled = true;
|
900 |
this.retryButton.style.display = 'none';
|
901 |
this.recordingStatus.textContent = 'Wait for the next question...';
|
902 |
+
this.recordingStatus.style.color = '#666';
|
903 |
this.micButton.disabled = true;
|
904 |
}
|
905 |
|
|
|
912 |
const evaluation = this.interviewData.evaluations[index] || {};
|
913 |
|
914 |
summaryHtml += `
|
915 |
+
<div class="summary-item">
|
916 |
+
<h4>Question ${index + 1}:</h4>
|
917 |
+
<p><strong>Q:</strong> ${question}</p>
|
918 |
+
<p><strong>A:</strong> ${answer}</p>
|
919 |
+
<p><strong>Score:</strong> <span class="evaluation-score">${evaluation.score || 'N/A'}</span></p>
|
920 |
+
<p><strong>Feedback:</strong> ${evaluation.feedback || 'No feedback provided'}</p>
|
921 |
+
</div>
|
922 |
+
`;
|
923 |
});
|
924 |
|
925 |
summaryContent.innerHTML = summaryHtml;
|
|
|
930 |
}
|
931 |
|
932 |
showError(message) {
|
933 |
+
console.error('Showing error:', message);
|
934 |
+
|
935 |
// Create error message element
|
936 |
const errorDiv = document.createElement('div');
|
937 |
errorDiv.className = 'error-message';
|
|
|
959 |
|
960 |
// Initialize the interview when page loads
|
961 |
document.addEventListener('DOMContentLoaded', () => {
|
962 |
+
console.log('DOM loaded, initializing AI Interviewer...');
|
963 |
new AIInterviewer();
|
964 |
});
|
965 |
|
requirements.txt
CHANGED
@@ -53,4 +53,10 @@ edge-tts==6.1.2
|
|
53 |
|
54 |
# Additional Flask dependencies
|
55 |
gunicorn
|
56 |
-
python-dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Additional Flask dependencies
|
55 |
gunicorn
|
56 |
+
python-dotenv
|
57 |
+
|
58 |
+
# Audio format conversion (critical for WebM/WAV handling)
|
59 |
+
pydub>=0.25.1
|
60 |
+
|
61 |
+
# Better error handling for API calls
|
62 |
+
requests>=2.31.0
|