Spaces:
Paused
Paused
Commit
·
32acb92
1
Parent(s):
a3c2881
updated
Browse files- backend/routes/interview_api.py +30 -24
- backend/services/interview_engine.py +112 -1
backend/routes/interview_api.py
CHANGED
@@ -7,11 +7,13 @@ from flask_login import login_required, current_user
|
|
7 |
from backend.models.database import db, Job, Application
|
8 |
from backend.services.interview_engine import (
|
9 |
generate_first_question,
|
|
|
10 |
edge_tts_to_file_sync,
|
11 |
whisper_stt,
|
12 |
evaluate_answer
|
13 |
)
|
14 |
|
|
|
15 |
# Additional imports for report generation
|
16 |
from backend.models.database import Application
|
17 |
from backend.services.report_generator import generate_llm_interview_report, create_pdf_report
|
@@ -233,23 +235,6 @@ def process_answer():
|
|
233 |
audio_url = None
|
234 |
|
235 |
if not is_complete:
|
236 |
-
# Follow‑up question bank. These are used for indices 1 .. n‑2.
|
237 |
-
# The final question (last index) probes salary expectations and
|
238 |
-
# working preferences. If the recruiter has configured fewer
|
239 |
-
# questions than the number of entries here, only the first
|
240 |
-
# appropriate number will be used.
|
241 |
-
follow_up_questions = [
|
242 |
-
"Can you describe a challenging project you've worked on and how you overcame the difficulties?",
|
243 |
-
"What is your favorite machine learning algorithm and why?",
|
244 |
-
"How do you stay up-to-date with advancements in AI?",
|
245 |
-
"Describe a time you had to learn a new technology quickly. How did you approach it?"
|
246 |
-
]
|
247 |
-
final_question = (
|
248 |
-
"What are your salary expectations? Are you looking for a full-time or part-time role, "
|
249 |
-
"and do you prefer remote or on-site work?"
|
250 |
-
)
|
251 |
-
|
252 |
-
# Compute the next index (zero‑based) for the upcoming question
|
253 |
next_idx = question_idx + 1
|
254 |
|
255 |
# Determine which question to ask next. If next_idx is the last
|
@@ -258,14 +243,35 @@ def process_answer():
|
|
258 |
# bank based on ``next_idx - 1`` (because index 0 is for the
|
259 |
# first follow‑up). If out of range, cycle through the list.
|
260 |
if next_idx == (total_questions - 1):
|
261 |
-
next_question_text =
|
|
|
|
|
|
|
262 |
else:
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
# Try to generate audio for the next question
|
271 |
try:
|
|
|
7 |
from backend.models.database import db, Job, Application
|
8 |
from backend.services.interview_engine import (
|
9 |
generate_first_question,
|
10 |
+
generate_next_question,
|
11 |
edge_tts_to_file_sync,
|
12 |
whisper_stt,
|
13 |
evaluate_answer
|
14 |
)
|
15 |
|
16 |
+
|
17 |
# Additional imports for report generation
|
18 |
from backend.models.database import Application
|
19 |
from backend.services.report_generator import generate_llm_interview_report, create_pdf_report
|
|
|
235 |
audio_url = None
|
236 |
|
237 |
if not is_complete:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
next_idx = question_idx + 1
|
239 |
|
240 |
# Determine which question to ask next. If next_idx is the last
|
|
|
243 |
# bank based on ``next_idx - 1`` (because index 0 is for the
|
244 |
# first follow‑up). If out of range, cycle through the list.
|
245 |
if next_idx == (total_questions - 1):
|
246 |
+
next_question_text = (
|
247 |
+
"What are your salary expectations? Are you looking for a full-time or part-time role, "
|
248 |
+
"and do you prefer remote or on-site work?"
|
249 |
+
)
|
250 |
else:
|
251 |
+
# 🔥 Use Qdrant-powered next question
|
252 |
+
try:
|
253 |
+
# You need profile + job for Qdrant context
|
254 |
+
job = Job.query.get(int(job_id)) if job_id else None
|
255 |
+
application = Application.query.filter_by(
|
256 |
+
user_id=current_user.id,
|
257 |
+
job_id=job_id
|
258 |
+
).first()
|
259 |
+
|
260 |
+
profile = {}
|
261 |
+
if application and application.extracted_features:
|
262 |
+
profile = json.loads(application.extracted_features)
|
263 |
+
|
264 |
+
conversation_history = data.get("conversation_history", [])
|
265 |
+
next_question_text = generate_next_question(
|
266 |
+
profile,
|
267 |
+
job,
|
268 |
+
conversation_history,
|
269 |
+
answer
|
270 |
+
)
|
271 |
+
except Exception as e:
|
272 |
+
logging.error(f"Error generating next question from Qdrant: {e}")
|
273 |
+
next_question_text = "Could you elaborate more on your last point?"
|
274 |
+
|
275 |
|
276 |
# Try to generate audio for the next question
|
277 |
try:
|
backend/services/interview_engine.py
CHANGED
@@ -129,7 +129,7 @@ def generate_first_question(profile, job):
|
|
129 |
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
|
130 |
|
131 |
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
|
132 |
-
|
133 |
try:
|
134 |
prompt = f"""
|
135 |
You are conducting an interview for a {job.role} position at {job.company}.
|
@@ -168,6 +168,62 @@ def generate_first_question(profile, job):
|
|
168 |
logging.error(f"Error generating first question: {e}")
|
169 |
return "Tell me about yourself and why you're interested in this position."
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
172 |
"""Synchronous wrapper for edge-tts with better error handling"""
|
173 |
try:
|
@@ -271,6 +327,61 @@ def convert_webm_to_wav(webm_path, wav_path):
|
|
271 |
except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
|
272 |
logging.error(f"Error converting audio: {e}")
|
273 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
import subprocess # top of the file if not already imported
|
276 |
|
|
|
129 |
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
|
130 |
|
131 |
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
|
132 |
+
|
133 |
try:
|
134 |
prompt = f"""
|
135 |
You are conducting an interview for a {job.role} position at {job.company}.
|
|
|
168 |
logging.error(f"Error generating first question: {e}")
|
169 |
return "Tell me about yourself and why you're interested in this position."
|
170 |
|
171 |
+
def generate_next_question(profile, job, conversation_history, last_answer):
|
172 |
+
"""Generate the next interview question based on profile, job, and conversation so far"""
|
173 |
+
all_roles = extract_all_roles_from_qdrant()
|
174 |
+
logging.info(f"[QDRANT DEBUG] Available Roles: {all_roles}")
|
175 |
+
|
176 |
+
retrieved_data = retrieve_interview_data(job.role.lower(), all_roles)
|
177 |
+
logging.info(f"[QDRANT DEBUG] Role requested: {job.role.lower()}")
|
178 |
+
logging.info(f"[QDRANT DEBUG] Questions retrieved: {len(retrieved_data)}")
|
179 |
+
if retrieved_data:
|
180 |
+
logging.info(f"[QDRANT DEBUG] Sample Next Q: {retrieved_data[0]['question']}")
|
181 |
+
else:
|
182 |
+
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
|
183 |
+
|
184 |
+
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
|
185 |
+
|
186 |
+
try:
|
187 |
+
prompt = f"""
|
188 |
+
You are continuing an interview for a {job.role} position at {job.company}.
|
189 |
+
Candidate's profile:
|
190 |
+
- Skills: {profile.get('skills', [])}
|
191 |
+
- Experience: {profile.get('experience', [])}
|
192 |
+
- Education: {profile.get('education', [])}
|
193 |
+
|
194 |
+
Conversation so far:
|
195 |
+
{conversation_history}
|
196 |
+
|
197 |
+
Candidate's last answer:
|
198 |
+
{last_answer}
|
199 |
+
|
200 |
+
Use the following context to generate the next question:
|
201 |
+
{context_data}
|
202 |
+
|
203 |
+
Generate an appropriate follow-up interview question that is professional and relevant.
|
204 |
+
Keep it concise and clear. If the interview is for a technical role, focus on technical skills.
|
205 |
+
"""
|
206 |
+
|
207 |
+
response = groq_llm.invoke(prompt)
|
208 |
+
|
209 |
+
if hasattr(response, 'content'):
|
210 |
+
question = response.content.strip()
|
211 |
+
elif isinstance(response, str):
|
212 |
+
question = response.strip()
|
213 |
+
else:
|
214 |
+
question = str(response).strip()
|
215 |
+
|
216 |
+
if not question or len(question) < 10:
|
217 |
+
question = "Could you elaborate more on your last point?"
|
218 |
+
|
219 |
+
logging.info(f"Generated next question: {question}")
|
220 |
+
return question
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
logging.error(f"Error generating next question: {e}")
|
224 |
+
return "Could you elaborate more on your last point?"
|
225 |
+
|
226 |
+
|
227 |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
228 |
"""Synchronous wrapper for edge-tts with better error handling"""
|
229 |
try:
|
|
|
327 |
except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
|
328 |
logging.error(f"Error converting audio: {e}")
|
329 |
return None
|
330 |
+
|
331 |
+
def generate_next_question(profile, job, conversation_history, last_answer):
|
332 |
+
"""Generate the next interview question based on profile, job, and conversation so far"""
|
333 |
+
all_roles = extract_all_roles_from_qdrant()
|
334 |
+
logging.info(f"[QDRANT DEBUG] Available Roles: {all_roles}")
|
335 |
+
|
336 |
+
retrieved_data = retrieve_interview_data(job.role.lower(), all_roles)
|
337 |
+
logging.info(f"[QDRANT DEBUG] Role requested: {job.role.lower()}")
|
338 |
+
logging.info(f"[QDRANT DEBUG] Questions retrieved: {len(retrieved_data)}")
|
339 |
+
if retrieved_data:
|
340 |
+
logging.info(f"[QDRANT DEBUG] Sample Next Q: {retrieved_data[0]['question']}")
|
341 |
+
else:
|
342 |
+
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
|
343 |
+
|
344 |
+
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
|
345 |
+
|
346 |
+
try:
|
347 |
+
prompt = f"""
|
348 |
+
You are continuing an interview for a {job.role} position at {job.company}.
|
349 |
+
Candidate's profile:
|
350 |
+
- Skills: {profile.get('skills', [])}
|
351 |
+
- Experience: {profile.get('experience', [])}
|
352 |
+
- Education: {profile.get('education', [])}
|
353 |
+
|
354 |
+
Conversation so far:
|
355 |
+
{conversation_history}
|
356 |
+
|
357 |
+
Candidate's last answer:
|
358 |
+
{last_answer}
|
359 |
+
|
360 |
+
Use the following context to generate the next question:
|
361 |
+
{context_data}
|
362 |
+
|
363 |
+
Generate an appropriate follow-up interview question that is professional and relevant.
|
364 |
+
Keep it concise and clear. If the interview is for a technical role, focus on technical skills.
|
365 |
+
"""
|
366 |
+
|
367 |
+
response = groq_llm.invoke(prompt)
|
368 |
+
|
369 |
+
if hasattr(response, 'content'):
|
370 |
+
question = response.content.strip()
|
371 |
+
elif isinstance(response, str):
|
372 |
+
question = response.strip()
|
373 |
+
else:
|
374 |
+
question = str(response).strip()
|
375 |
+
|
376 |
+
if not question or len(question) < 10:
|
377 |
+
question = "Could you elaborate more on your last point?"
|
378 |
+
|
379 |
+
logging.info(f"Generated next question: {question}")
|
380 |
+
return question
|
381 |
+
|
382 |
+
except Exception as e:
|
383 |
+
logging.error(f"Error generating next question: {e}")
|
384 |
+
return "Could you elaborate more on your last point?"
|
385 |
|
386 |
import subprocess # top of the file if not already imported
|
387 |
|