Spaces:
Paused
Paused
Commit
·
33fa314
1
Parent(s):
682910e
updated
Browse files
backend/services/resume_parser.py
CHANGED
@@ -1,78 +1,61 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import subprocess
|
4 |
-
import zipfile
|
5 |
import json
|
|
|
|
|
|
|
|
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
7 |
|
8 |
# --------------------
|
9 |
-
# Load Model
|
10 |
# --------------------
|
11 |
-
MODEL_NAME = "
|
12 |
|
13 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
15 |
-
|
16 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
17 |
|
18 |
# --------------------
|
19 |
-
# Extract Text
|
20 |
# --------------------
|
21 |
def extract_text(file_path: str) -> str:
|
22 |
-
|
23 |
-
if
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
except:
|
31 |
-
return ""
|
32 |
-
elif file_path.lower().endswith(".docx"):
|
33 |
-
try:
|
34 |
-
with zipfile.ZipFile(file_path) as zf:
|
35 |
-
with zf.open("word/document.xml") as docx_xml:
|
36 |
-
xml_text = docx_xml.read().decode("utf-8", errors="ignore")
|
37 |
-
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
|
38 |
-
return re.sub(r"<[^>]+>", " ", xml_text)
|
39 |
-
except:
|
40 |
-
return ""
|
41 |
-
return ""
|
42 |
|
43 |
# --------------------
|
44 |
# Parse Resume
|
45 |
# --------------------
|
46 |
-
def parse_resume(file_path: str
|
47 |
-
"""Extract Name, Skills, Education, Experience from resume."""
|
48 |
text = extract_text(file_path)
|
49 |
entities = ner_pipeline(text)
|
50 |
|
51 |
-
name
|
|
|
|
|
|
|
|
|
52 |
for ent in entities:
|
53 |
label = ent["entity_group"].upper()
|
54 |
-
|
55 |
|
56 |
if label == "NAME":
|
57 |
-
name.append(
|
58 |
elif label == "SKILL":
|
59 |
-
skills.append(
|
60 |
elif label in ["EDUCATION", "DEGREE"]:
|
61 |
-
education.append(
|
62 |
-
elif label in ["EXPERIENCE", "JOB", "ROLE"]:
|
63 |
-
experience.append(
|
64 |
|
65 |
return {
|
66 |
-
"name": " ".join(dict.fromkeys(name)),
|
67 |
-
"skills": ", ".join(dict.fromkeys(skills)),
|
68 |
-
"education": ", ".join(dict.fromkeys(education)),
|
69 |
-
"experience": ", ".join(dict.fromkeys(experience))
|
70 |
}
|
71 |
-
|
72 |
-
# --------------------
|
73 |
-
# Example
|
74 |
-
# --------------------
|
75 |
-
if __name__ == "__main__":
|
76 |
-
resume_path = "resume.pdf" # Change to test file
|
77 |
-
result = parse_resume(resume_path)
|
78 |
-
print(json.dumps(result, indent=2))
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
from pdfminer.high_level import extract_text as pdf_extract_text
|
6 |
+
from docx import Document
|
7 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
8 |
|
9 |
# --------------------
|
10 |
+
# Load Resume NER Model
|
11 |
# --------------------
|
12 |
+
MODEL_NAME = "Ioana23/bert-finetuned-resumes-ner"
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
15 |
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
|
|
|
16 |
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
17 |
|
18 |
# --------------------
|
19 |
+
# Extract Text from PDF/DOCX
|
20 |
# --------------------
|
21 |
def extract_text(file_path: str) -> str:
|
22 |
+
path = Path(file_path)
|
23 |
+
if path.suffix.lower() == ".pdf":
|
24 |
+
return pdf_extract_text(file_path)
|
25 |
+
elif path.suffix.lower() == ".docx":
|
26 |
+
doc = Document(file_path)
|
27 |
+
return "\n".join([p.text for p in doc.paragraphs])
|
28 |
+
else:
|
29 |
+
raise ValueError("Unsupported file format")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# --------------------
|
32 |
# Parse Resume
|
33 |
# --------------------
|
34 |
+
def parse_resume(file_path: str) -> Dict[str, str]:
|
|
|
35 |
text = extract_text(file_path)
|
36 |
entities = ner_pipeline(text)
|
37 |
|
38 |
+
name = []
|
39 |
+
skills = []
|
40 |
+
education = []
|
41 |
+
experience = []
|
42 |
+
|
43 |
for ent in entities:
|
44 |
label = ent["entity_group"].upper()
|
45 |
+
value = ent["word"].strip()
|
46 |
|
47 |
if label == "NAME":
|
48 |
+
name.append(value)
|
49 |
elif label == "SKILL":
|
50 |
+
skills.append(value)
|
51 |
elif label in ["EDUCATION", "DEGREE"]:
|
52 |
+
education.append(value)
|
53 |
+
elif label in ["EXPERIENCE", "JOB", "ROLE", "POSITION"]:
|
54 |
+
experience.append(value)
|
55 |
|
56 |
return {
|
57 |
+
"name": " ".join(dict.fromkeys(name)) or "Not Found",
|
58 |
+
"skills": ", ".join(dict.fromkeys(skills)) or "Not Found",
|
59 |
+
"education": ", ".join(dict.fromkeys(education)) or "Not Found",
|
60 |
+
"experience": ", ".join(dict.fromkeys(experience)) or "Not Found"
|
61 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|