Spaces:
Paused
Paused
Commit
·
57a37ae
1
Parent(s):
8255e28
updated
Browse files
backend/services/interview_engine.py
CHANGED
@@ -20,6 +20,14 @@ groq_llm = ChatGroq(
|
|
20 |
)
|
21 |
|
22 |
# Initialize Whisper model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
whisper_model = None
|
24 |
|
25 |
def load_whisper_model():
|
@@ -28,12 +36,17 @@ def load_whisper_model():
|
|
28 |
try:
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
compute_type = "float16" if device == "cuda" else "int8"
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
except Exception as e:
|
34 |
logging.error(f"Error loading Whisper model: {e}")
|
35 |
# Fallback to CPU
|
36 |
-
whisper_model = WhisperModel("
|
37 |
return whisper_model
|
38 |
|
39 |
def generate_first_question(profile, job):
|
|
|
20 |
)
|
21 |
|
22 |
# Initialize Whisper model
|
23 |
+
#
|
24 |
+
# Loading the Whisper model can take several seconds on first use because the
|
25 |
+
# model weights must be downloaded from Hugging Face. This delay can cause
|
26 |
+
# the API call to ``/api/transcribe_audio`` to appear stuck while the model
|
27 |
+
# downloads. To mitigate this, we allow the model size to be configured via
|
28 |
+
# the ``WHISPER_MODEL_NAME`` environment variable and preload the model when
|
29 |
+
# this module is imported. Using a smaller model (e.g. "tiny" or "base.en")
|
30 |
+
# reduces download size and inference time considerably.
|
31 |
whisper_model = None
|
32 |
|
33 |
def load_whisper_model():
|
|
|
36 |
try:
|
37 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
compute_type = "float16" if device == "cuda" else "int8"
|
39 |
+
# Allow overriding the model size via environment. Default to a
|
40 |
+
# lightweight model to improve startup times. Available options
|
41 |
+
# include: tiny, base, base.en, small, medium, large. See
|
42 |
+
# https://huggingface.co/ggerganov/whisper.cpp for details.
|
43 |
+
model_name = os.getenv("WHISPER_MODEL_NAME", "tiny")
|
44 |
+
whisper_model = WhisperModel(model_name, device=device, compute_type=compute_type)
|
45 |
+
logging.info(f"Whisper model '{model_name}' loaded on {device} with {compute_type}")
|
46 |
except Exception as e:
|
47 |
logging.error(f"Error loading Whisper model: {e}")
|
48 |
# Fallback to CPU
|
49 |
+
whisper_model = WhisperModel(model_name if 'model_name' in locals() else "tiny", device="cpu", compute_type="int8")
|
50 |
return whisper_model
|
51 |
|
52 |
def generate_first_question(profile, job):
|