Spaces:
Paused
Paused
Commit
·
76030db
0
Parent(s):
Initial commit: Project structure for Codingo AI recruitment System
Browse files- .gitignore +38 -0
- readme.md +273 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
env/
|
8 |
+
build/
|
9 |
+
develop-eggs/
|
10 |
+
dist/
|
11 |
+
downloads/
|
12 |
+
eggs/
|
13 |
+
.eggs/
|
14 |
+
lib/
|
15 |
+
lib64/
|
16 |
+
parts/
|
17 |
+
sdist/
|
18 |
+
var/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
ENV/
|
26 |
+
|
27 |
+
# PyCharm
|
28 |
+
.idea/
|
29 |
+
|
30 |
+
# Training data & models
|
31 |
+
data/raw_cvs/
|
32 |
+
backend/model/*.pkl
|
33 |
+
|
34 |
+
# Jupyter Notebook
|
35 |
+
.ipynb_checkpoints
|
36 |
+
|
37 |
+
# OS specific
|
38 |
+
.DS_Store
|
readme.md
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Codingo - AI Powered Smart Recruitment System
|
2 |
+
|
3 |
+
This repository contains the implementation of Codingo, an AI-powered online recruitment platform designed to automate and enhance the hiring process through a virtual HR assistant named LUNA.
|
4 |
+
|
5 |
+
## Project Overview
|
6 |
+
|
7 |
+
Codingo addresses the challenges of traditional recruitment processes by offering:
|
8 |
+
- Automated CV screening and skill-based shortlisting
|
9 |
+
- AI-led interviews through the virtual assistant LUNA
|
10 |
+
- Real-time cheating detection during assessments
|
11 |
+
- Gamified practice tools for candidates
|
12 |
+
- Secure administration interface for hiring managers
|
13 |
+
|
14 |
+
## Getting Started
|
15 |
+
|
16 |
+
This guide outlines the development process, starting with local model training before moving to AWS deployment.
|
17 |
+
|
18 |
+
### Prerequisites
|
19 |
+
|
20 |
+
- Python 3.8+
|
21 |
+
- pip (Python package manager)
|
22 |
+
- Git
|
23 |
+
|
24 |
+
### Development Process
|
25 |
+
|
26 |
+
We'll implement the project in phases:
|
27 |
+
|
28 |
+
#### Phase 1: Local Training and Feature Extraction (Current Phase)
|
29 |
+
|
30 |
+
This initial phase focuses on building and training the model locally before AWS deployment.
|
31 |
+
|
32 |
+
### Project Structure
|
33 |
+
|
34 |
+
```
|
35 |
+
Codingo/
|
36 |
+
├── backend/ # Flask API backend
|
37 |
+
│ ├── app.py # Flask server
|
38 |
+
│ ├── predict.py # Predict using trained model
|
39 |
+
│ ├── train_model.py # Model training script
|
40 |
+
│ ├── model/ # Trained model artifacts
|
41 |
+
│ │ └── cv_classifier.pkl
|
42 |
+
│ ├── utils/
|
43 |
+
│ │ ├── text_extractor.py # PDF/DOCX to text
|
44 |
+
│ │ └── preprocessor.py # Cleaning, tokenizing
|
45 |
+
│
|
46 |
+
├── data/
|
47 |
+
│ ├── training.csv # Your training dataset
|
48 |
+
│ └── raw_cvs/ # CV files (PDF/DOCX/txt)
|
49 |
+
│
|
50 |
+
├── notebooks/
|
51 |
+
│ └── eda.ipynb # Data exploration & feature work
|
52 |
+
│
|
53 |
+
├── requirements.txt # Python dependencies
|
54 |
+
└── README.md # Project overview
|
55 |
+
```
|
56 |
+
|
57 |
+
## Step-by-Step Implementation Guide
|
58 |
+
|
59 |
+
### Step 1: Create Training Dataset
|
60 |
+
|
61 |
+
Start by manually collecting ~50-100 CV-like text samples with position labels.
|
62 |
+
|
63 |
+
**File:** `data/training.csv`
|
64 |
+
|
65 |
+
Example format:
|
66 |
+
```
|
67 |
+
text,position
|
68 |
+
"Experienced in Python, Flask, AWS",Backend Developer
|
69 |
+
"Built dashboards with React and TypeScript",Frontend Developer
|
70 |
+
"ML projects using pandas, scikit-learn",Data Scientist
|
71 |
+
```
|
72 |
+
|
73 |
+
### Step 2: Train Model
|
74 |
+
|
75 |
+
Implement a classifier using scikit-learn to predict job roles from CV text.
|
76 |
+
|
77 |
+
**File:** `backend/train_model.py`
|
78 |
+
|
79 |
+
```python
|
80 |
+
import pandas as pd
|
81 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
82 |
+
from sklearn.pipeline import Pipeline
|
83 |
+
from sklearn.linear_model import LogisticRegression
|
84 |
+
import joblib
|
85 |
+
|
86 |
+
# Load training data
|
87 |
+
df = pd.read_csv('data/training.csv')
|
88 |
+
|
89 |
+
# Define model pipeline
|
90 |
+
model = Pipeline([
|
91 |
+
('tfidf', TfidfVectorizer(max_features=5000, ngram_range=(1, 2))),
|
92 |
+
('classifier', LogisticRegression(max_iter=1000))
|
93 |
+
])
|
94 |
+
|
95 |
+
# Train model
|
96 |
+
model.fit(df['text'], df['position'])
|
97 |
+
|
98 |
+
# Save model
|
99 |
+
joblib.dump(model, 'backend/model/cv_classifier.pkl')
|
100 |
+
|
101 |
+
print("Model trained and saved successfully!")
|
102 |
+
```
|
103 |
+
|
104 |
+
### Step 3: Test Prediction Locally
|
105 |
+
|
106 |
+
Create a script to verify your model works correctly.
|
107 |
+
|
108 |
+
**File:** `backend/predict.py`
|
109 |
+
|
110 |
+
```python
|
111 |
+
import joblib
|
112 |
+
import sys
|
113 |
+
|
114 |
+
def predict_role(cv_text):
|
115 |
+
# Load the trained model
|
116 |
+
model = joblib.load('backend/model/cv_classifier.pkl')
|
117 |
+
|
118 |
+
# Make prediction
|
119 |
+
prediction = model.predict([cv_text])[0]
|
120 |
+
confidence = max(model.predict_proba([cv_text])[0]) * 100
|
121 |
+
|
122 |
+
return {
|
123 |
+
'predicted_position': prediction,
|
124 |
+
'confidence': f"{confidence:.2f}%"
|
125 |
+
}
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
if len(sys.argv) > 1:
|
129 |
+
# Get CV text from command line argument
|
130 |
+
cv_text = sys.argv[1]
|
131 |
+
else:
|
132 |
+
# Example CV text
|
133 |
+
cv_text = "Experienced Python developer with 5 years of experience in Flask and AWS."
|
134 |
+
|
135 |
+
result = predict_role(cv_text)
|
136 |
+
print(f"Predicted Position: {result['predicted_position']}")
|
137 |
+
print(f"Confidence: {result['confidence']}")
|
138 |
+
```
|
139 |
+
|
140 |
+
### Step 4: Add Text Extraction Utility
|
141 |
+
|
142 |
+
Create utilities to extract text from PDF and DOCX files.
|
143 |
+
|
144 |
+
**File:** `backend/utils/text_extractor.py`
|
145 |
+
|
146 |
+
```python
|
147 |
+
import fitz # PyMuPDF
|
148 |
+
import docx
|
149 |
+
import os
|
150 |
+
|
151 |
+
def extract_text_from_pdf(path):
|
152 |
+
"""Extract text from PDF file."""
|
153 |
+
doc = fitz.open(path)
|
154 |
+
text = ""
|
155 |
+
for page in doc:
|
156 |
+
text += page.get_text()
|
157 |
+
return text.strip()
|
158 |
+
|
159 |
+
def extract_text_from_docx(path):
|
160 |
+
"""Extract text from DOCX file."""
|
161 |
+
doc = docx.Document(path)
|
162 |
+
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
163 |
+
return text.strip()
|
164 |
+
|
165 |
+
def extract_text(file_path):
|
166 |
+
"""Extract text from either PDF or DOCX."""
|
167 |
+
extension = os.path.splitext(file_path)[1].lower()
|
168 |
+
|
169 |
+
if extension == '.pdf':
|
170 |
+
return extract_text_from_pdf(file_path)
|
171 |
+
elif extension in ['.docx', '.doc']:
|
172 |
+
return extract_text_from_docx(file_path)
|
173 |
+
elif extension == '.txt':
|
174 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
175 |
+
return f.read().strip()
|
176 |
+
else:
|
177 |
+
raise ValueError(f"Unsupported file extension: {extension}")
|
178 |
+
```
|
179 |
+
|
180 |
+
### Step 5: Add Flask API (Simple)
|
181 |
+
|
182 |
+
Create a basic Flask API to accept CV uploads and return predictions.
|
183 |
+
|
184 |
+
**File:** `backend/app.py`
|
185 |
+
|
186 |
+
```python
|
187 |
+
from flask import Flask, request, jsonify
|
188 |
+
from utils.text_extractor import extract_text
|
189 |
+
import joblib
|
190 |
+
import os
|
191 |
+
|
192 |
+
app = Flask(__name__)
|
193 |
+
model = joblib.load("model/cv_classifier.pkl")
|
194 |
+
|
195 |
+
# Ensure directories exist
|
196 |
+
os.makedirs("data/raw_cvs", exist_ok=True)
|
197 |
+
os.makedirs("model", exist_ok=True)
|
198 |
+
|
199 |
+
@app.route("/predict", methods=["POST"])
|
200 |
+
def predict():
|
201 |
+
if 'file' not in request.files:
|
202 |
+
return jsonify({"error": "No file provided"}), 400
|
203 |
+
|
204 |
+
file = request.files["file"]
|
205 |
+
file_path = f"data/raw_cvs/{file.filename}"
|
206 |
+
file.save(file_path)
|
207 |
+
|
208 |
+
try:
|
209 |
+
text = extract_text(file_path)
|
210 |
+
prediction = model.predict([text])[0]
|
211 |
+
confidence = max(model.predict_proba([text])[0]) * 100
|
212 |
+
|
213 |
+
return jsonify({
|
214 |
+
"predicted_position": prediction,
|
215 |
+
"confidence": f"{confidence:.2f}%"
|
216 |
+
})
|
217 |
+
except Exception as e:
|
218 |
+
return jsonify({"error": str(e)}), 500
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
app.run(debug=True)
|
222 |
+
```
|
223 |
+
|
224 |
+
### Step 6: Install Dependencies
|
225 |
+
|
226 |
+
**File:** `requirements.txt`
|
227 |
+
|
228 |
+
```
|
229 |
+
flask
|
230 |
+
scikit-learn
|
231 |
+
pandas
|
232 |
+
joblib
|
233 |
+
PyMuPDF
|
234 |
+
python-docx
|
235 |
+
```
|
236 |
+
|
237 |
+
Run: `pip install -r requirements.txt`
|
238 |
+
|
239 |
+
## Next Steps
|
240 |
+
|
241 |
+
After completing Phase 1, we'll move to:
|
242 |
+
|
243 |
+
1. **Phase 2: Enhanced Model & NLP Features**
|
244 |
+
- Implement BERT or DistilBERT for improved semantic understanding
|
245 |
+
- Add skill extraction from CVs
|
246 |
+
- Develop job-CV matching scoring
|
247 |
+
|
248 |
+
2. **Phase 3: Web Interface & Chatbot**
|
249 |
+
- Develop user interface for admin and candidates
|
250 |
+
- Implement LUNA virtual assistant using LangChain
|
251 |
+
- Add interview scheduling functionality
|
252 |
+
|
253 |
+
3. **Phase 4: Video Interview & Proctoring**
|
254 |
+
- Add video interview capabilities
|
255 |
+
- Implement cheating detection using computer vision
|
256 |
+
- Develop automated scoring system
|
257 |
+
|
258 |
+
4. **Phase 5: AWS Deployment**
|
259 |
+
- Set up AWS infrastructure using Terraform
|
260 |
+
- Deploy application to EC2/Lambda
|
261 |
+
- Configure S3 for file storage
|
262 |
+
|
263 |
+
## Authors
|
264 |
+
|
265 |
+
- Hussein El Saadi
|
266 |
+
- Nour Ali Shaito
|
267 |
+
|
268 |
+
## Supervisor
|
269 |
+
- Dr. Ali Ezzedine
|
270 |
+
|
271 |
+
## License
|
272 |
+
|
273 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
scikit-learn
|
3 |
+
pandas
|
4 |
+
joblib
|
5 |
+
PyMuPDF
|
6 |
+
python-docx
|