Spaces:
Paused
Paused
Commit
·
7814b36
1
Parent(s):
25c6eb9
updated
Browse files- chatbot/chatbot.py +115 -125
chatbot/chatbot.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
# codingo/chatbot/chatbot.py
|
2 |
-
"""
|
3 |
|
4 |
import os
|
5 |
import shutil
|
6 |
from typing import List
|
7 |
-
import
|
8 |
|
9 |
os.environ.setdefault("HF_HOME", "/tmp/huggingface")
|
10 |
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/huggingface/transformers")
|
11 |
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", "/tmp/huggingface/hub")
|
12 |
-
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
13 |
|
14 |
-
|
15 |
-
|
16 |
_chatbot_embedder = None
|
17 |
_chatbot_collection = None
|
18 |
|
@@ -20,77 +19,68 @@ _current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
20 |
_knowledge_base_path = os.path.join(_current_dir, "chatbot.txt")
|
21 |
_chroma_db_dir = "/tmp/chroma_db"
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
-
def
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
global _hf_model, _hf_tokenizer
|
30 |
-
if _hf_model is not None and _hf_tokenizer is not None:
|
31 |
return
|
32 |
-
|
33 |
-
print("
|
34 |
-
|
35 |
-
print(f"Loading model: {model_name}")
|
36 |
|
37 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
print(f"Using device: {device}")
|
39 |
|
40 |
-
tokenizer =
|
41 |
-
model =
|
42 |
-
|
43 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
44 |
low_cpu_mem_usage=True
|
45 |
)
|
46 |
-
|
47 |
model = model.to(device)
|
48 |
model.eval()
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
_hf_model = model
|
54 |
-
_hf_tokenizer = tokenizer
|
55 |
-
print("Model initialization complete")
|
56 |
|
57 |
-
def _init_vector_store()
|
58 |
global _chatbot_embedder, _chatbot_collection
|
59 |
if _chatbot_embedder is not None and _chatbot_collection is not None:
|
60 |
return
|
61 |
|
62 |
print("Initializing vector store...")
|
63 |
-
|
64 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
65 |
from sentence_transformers import SentenceTransformer
|
66 |
import chromadb
|
67 |
from chromadb.config import Settings
|
68 |
|
|
|
69 |
shutil.rmtree(_chroma_db_dir, ignore_errors=True)
|
70 |
os.makedirs(_chroma_db_dir, exist_ok=True)
|
71 |
|
|
|
72 |
try:
|
73 |
with open(_knowledge_base_path, encoding="utf-8") as f:
|
74 |
raw_text = f.read()
|
75 |
-
print(f"Loaded knowledge base
|
76 |
except FileNotFoundError:
|
77 |
-
print("Knowledge base
|
78 |
-
raw_text =
|
79 |
-
"Codingo is an AI-powered recruitment platform designed to "
|
80 |
-
"streamline job applications, candidate screening, and hiring."
|
81 |
-
)
|
82 |
|
83 |
-
|
|
|
84 |
docs = [doc.strip() for doc in splitter.split_text(raw_text) if doc.strip()]
|
85 |
-
print(f"
|
86 |
|
|
|
87 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
88 |
-
embeddings = embedder.encode(docs, show_progress_bar=False
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
is_persistent=False, # In-memory for HF Spaces
|
93 |
-
))
|
94 |
|
95 |
try:
|
96 |
client.delete_collection("chatbot")
|
@@ -103,112 +93,112 @@ def _init_vector_store() -> None:
|
|
103 |
|
104 |
_chatbot_embedder = embedder
|
105 |
_chatbot_collection = collection
|
106 |
-
print("Vector store
|
107 |
|
108 |
def get_chatbot_response(query: str) -> str:
|
109 |
try:
|
110 |
-
print(f"\n=== Processing query: {query} ===")
|
111 |
-
|
112 |
if not query or not query.strip():
|
113 |
-
return "
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
if torch.cuda.is_available():
|
117 |
torch.cuda.empty_cache()
|
118 |
-
|
119 |
-
_init_vector_store()
|
120 |
-
_init_hf_model()
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
tokenizer = _hf_tokenizer
|
126 |
-
|
127 |
-
# Get relevant documents
|
128 |
-
query_embedding = embedder.encode([query])[0]
|
129 |
-
results = collection.query(query_embeddings=[query_embedding.tolist()], n_results=3)
|
130 |
-
retrieved_docs = results.get("documents", [[]])[0] if results else []
|
131 |
-
|
132 |
-
print(f"Retrieved {len(retrieved_docs)} documents")
|
133 |
|
134 |
-
#
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
if "Q:" in doc and "A:" in doc:
|
140 |
-
lines = doc.split('\n')
|
141 |
-
for i, line in enumerate(lines):
|
142 |
-
if line.strip().startswith('Q:'):
|
143 |
-
question = line[2:].strip().lower()
|
144 |
-
# Check for keyword overlap
|
145 |
-
query_words = set(query_lower.split())
|
146 |
-
question_words = set(question.split())
|
147 |
-
overlap = len(query_words & question_words)
|
148 |
-
if overlap >= 2 or any(word in question for word in query_words if len(word) > 4):
|
149 |
-
# Found matching question
|
150 |
-
for j in range(i+1, len(lines)):
|
151 |
-
if lines[j].strip().startswith('A:'):
|
152 |
-
answer = lines[j][2:].strip()
|
153 |
-
print(f"Found FAQ match: {answer}")
|
154 |
-
return answer
|
155 |
-
elif lines[j].strip().startswith('Q:'):
|
156 |
-
break
|
157 |
|
158 |
-
#
|
159 |
-
|
160 |
|
161 |
-
#
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
# Tokenize
|
165 |
-
inputs =
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
# Generate
|
169 |
with torch.no_grad():
|
170 |
-
|
171 |
-
inputs,
|
172 |
-
|
173 |
-
num_beams=
|
174 |
-
temperature=0.
|
175 |
-
pad_token_id=tokenizer.eos_token_id,
|
176 |
-
eos_token_id=tokenizer.eos_token_id,
|
177 |
do_sample=True,
|
178 |
top_p=0.9,
|
|
|
179 |
)
|
180 |
|
181 |
-
# Decode
|
182 |
-
|
|
|
183 |
|
184 |
-
#
|
185 |
-
response
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
return "Codingo works by using AI to match candidates with suitable job postings. Candidates create profiles, upload resumes, and our AI analyzes their skills to recommend the best job matches."
|
193 |
-
elif "improve" in query_lower:
|
194 |
-
return "To improve your match score on Codingo, update your profile with accurate skills, add relevant keywords from job descriptions, and include links to your portfolio projects."
|
195 |
-
elif "what" in query_lower:
|
196 |
-
if "codingo" in query_lower:
|
197 |
-
return "Codingo is an AI-powered recruitment platform that streamlines job applications and hiring. We help candidates find suitable jobs and employers find the right talent through intelligent matching."
|
198 |
-
elif "special" in query_lower or "different" in query_lower:
|
199 |
-
return "What makes Codingo special is our AI that understands both technical skills and language, real-time CV feedback, bias-aware algorithms, and specialized focus on tech professionals."
|
200 |
-
elif "can" in query_lower or "does" in query_lower:
|
201 |
-
if "chatbot" in query_lower:
|
202 |
-
return "I can help you with questions about the Codingo platform, including how to use it, improve your profile, understand our features, and get tips for job applications."
|
203 |
-
elif "free" in query_lower or "cost" in query_lower:
|
204 |
-
return "Profile creation and job applications are free on Codingo. Premium features may be offered for advanced analytics and additional services."
|
205 |
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
return response
|
210 |
-
|
211 |
except Exception as e:
|
212 |
-
print(f"Error
|
|
|
213 |
traceback.print_exc()
|
214 |
-
return "I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# codingo/chatbot/chatbot.py
|
2 |
+
"""Interactive chatbot using Flan-T5 for dynamic responses"""
|
3 |
|
4 |
import os
|
5 |
import shutil
|
6 |
from typing import List
|
7 |
+
import torch
|
8 |
|
9 |
os.environ.setdefault("HF_HOME", "/tmp/huggingface")
|
10 |
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/huggingface/transformers")
|
11 |
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", "/tmp/huggingface/hub")
|
|
|
12 |
|
13 |
+
_model = None
|
14 |
+
_tokenizer = None
|
15 |
_chatbot_embedder = None
|
16 |
_chatbot_collection = None
|
17 |
|
|
|
19 |
_knowledge_base_path = os.path.join(_current_dir, "chatbot.txt")
|
20 |
_chroma_db_dir = "/tmp/chroma_db"
|
21 |
|
22 |
+
# Using Flan-T5 - it's small, fast, and great for Q&A
|
23 |
+
MODEL_NAME = "google/flan-t5-small"
|
24 |
|
25 |
+
def _init_model():
|
26 |
+
global _model, _tokenizer
|
27 |
+
if _model is not None and _tokenizer is not None:
|
|
|
|
|
|
|
28 |
return
|
29 |
+
|
30 |
+
print("Loading Flan-T5 model...")
|
31 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
32 |
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
print(f"Using device: {device}")
|
35 |
|
36 |
+
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME)
|
37 |
+
model = T5ForConditionalGeneration.from_pretrained(
|
38 |
+
MODEL_NAME,
|
39 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
40 |
low_cpu_mem_usage=True
|
41 |
)
|
|
|
42 |
model = model.to(device)
|
43 |
model.eval()
|
44 |
|
45 |
+
_model = model
|
46 |
+
_tokenizer = tokenizer
|
47 |
+
print("Model loaded successfully!")
|
|
|
|
|
|
|
48 |
|
49 |
+
def _init_vector_store():
|
50 |
global _chatbot_embedder, _chatbot_collection
|
51 |
if _chatbot_embedder is not None and _chatbot_collection is not None:
|
52 |
return
|
53 |
|
54 |
print("Initializing vector store...")
|
|
|
55 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
56 |
from sentence_transformers import SentenceTransformer
|
57 |
import chromadb
|
58 |
from chromadb.config import Settings
|
59 |
|
60 |
+
# Clean and create directory
|
61 |
shutil.rmtree(_chroma_db_dir, ignore_errors=True)
|
62 |
os.makedirs(_chroma_db_dir, exist_ok=True)
|
63 |
|
64 |
+
# Load knowledge base
|
65 |
try:
|
66 |
with open(_knowledge_base_path, encoding="utf-8") as f:
|
67 |
raw_text = f.read()
|
68 |
+
print(f"Loaded knowledge base: {len(raw_text)} characters")
|
69 |
except FileNotFoundError:
|
70 |
+
print("Knowledge base not found!")
|
71 |
+
raw_text = "Codingo is an AI recruitment platform."
|
|
|
|
|
|
|
72 |
|
73 |
+
# Split into chunks
|
74 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=50)
|
75 |
docs = [doc.strip() for doc in splitter.split_text(raw_text) if doc.strip()]
|
76 |
+
print(f"Created {len(docs)} document chunks")
|
77 |
|
78 |
+
# Create embeddings
|
79 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
80 |
+
embeddings = embedder.encode(docs, show_progress_bar=False)
|
81 |
|
82 |
+
# Create ChromaDB collection
|
83 |
+
client = chromadb.Client(Settings(anonymized_telemetry=False, is_persistent=False))
|
|
|
|
|
84 |
|
85 |
try:
|
86 |
client.delete_collection("chatbot")
|
|
|
93 |
|
94 |
_chatbot_embedder = embedder
|
95 |
_chatbot_collection = collection
|
96 |
+
print("Vector store ready!")
|
97 |
|
98 |
def get_chatbot_response(query: str) -> str:
|
99 |
try:
|
|
|
|
|
100 |
if not query or not query.strip():
|
101 |
+
return "Hi! I'm LUNA AI. Ask me anything about Codingo!"
|
102 |
+
|
103 |
+
print(f"\nProcessing: '{query}'")
|
104 |
+
|
105 |
+
# Clear GPU cache
|
106 |
if torch.cuda.is_available():
|
107 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
108 |
|
109 |
+
# Initialize
|
110 |
+
_init_vector_store()
|
111 |
+
_init_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
# Search for relevant context
|
114 |
+
query_embedding = _chatbot_embedder.encode([query])[0]
|
115 |
+
results = _chatbot_collection.query(
|
116 |
+
query_embeddings=[query_embedding.tolist()],
|
117 |
+
n_results=3
|
118 |
+
)
|
119 |
|
120 |
+
retrieved_docs = results.get("documents", [[]])[0] if results else []
|
121 |
+
print(f"Found {len(retrieved_docs)} relevant chunks")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# Combine the most relevant information
|
124 |
+
context = " ".join(retrieved_docs[:2]) if retrieved_docs else "Codingo is an AI recruitment platform."
|
125 |
|
126 |
+
# Create a prompt for Flan-T5
|
127 |
+
prompt = f"""Answer the question based on the context about Codingo.
|
128 |
+
|
129 |
+
Context: {context}
|
130 |
+
|
131 |
+
Question: {query}
|
132 |
+
|
133 |
+
Answer:"""
|
134 |
|
135 |
# Tokenize
|
136 |
+
inputs = _tokenizer(
|
137 |
+
prompt,
|
138 |
+
max_length=512,
|
139 |
+
truncation=True,
|
140 |
+
return_tensors="pt"
|
141 |
+
).to(_model.device)
|
142 |
|
143 |
+
# Generate response
|
144 |
with torch.no_grad():
|
145 |
+
outputs = _model.generate(
|
146 |
+
**inputs,
|
147 |
+
max_new_tokens=150,
|
148 |
+
num_beams=4,
|
149 |
+
temperature=0.7,
|
|
|
|
|
150 |
do_sample=True,
|
151 |
top_p=0.9,
|
152 |
+
repetition_penalty=1.2
|
153 |
)
|
154 |
|
155 |
+
# Decode response
|
156 |
+
response = _tokenizer.decode(outputs[0], skip_special_tokens=True)
|
157 |
+
print(f"Generated: '{response}'")
|
158 |
|
159 |
+
# Make sure we have a good response
|
160 |
+
if not response or len(response) < 5:
|
161 |
+
# Fallback: try a simpler prompt
|
162 |
+
simple_prompt = f"Question about Codingo: {query}\nAnswer:"
|
163 |
+
inputs = _tokenizer(simple_prompt, max_length=256, truncation=True, return_tensors="pt").to(_model.device)
|
164 |
+
|
165 |
+
with torch.no_grad():
|
166 |
+
outputs = _model.generate(**inputs, max_new_tokens=100, temperature=0.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
response = _tokenizer.decode(outputs[0], skip_special_tokens=True)
|
169 |
+
|
170 |
+
# Clean up the response
|
171 |
+
response = response.strip()
|
172 |
+
|
173 |
+
# If still too short, provide a helpful response
|
174 |
+
if len(response) < 10:
|
175 |
+
if "hello" in query.lower() or "hi" in query.lower():
|
176 |
+
return "Hello! I'm LUNA AI, your Codingo assistant. I can help you with questions about our AI recruitment platform, job matching, CV tips, and more!"
|
177 |
+
else:
|
178 |
+
return f"I can help you with that! Based on what I know about Codingo: {retrieved_docs[0][:200] if retrieved_docs else 'Codingo is an AI-powered recruitment platform that helps match candidates with jobs.'}"
|
179 |
|
180 |
return response
|
181 |
+
|
182 |
except Exception as e:
|
183 |
+
print(f"Error: {e}")
|
184 |
+
import traceback
|
185 |
traceback.print_exc()
|
186 |
+
return "I'm having a technical issue. Please try asking your question again!"
|
187 |
+
|
188 |
+
# Test function
|
189 |
+
if __name__ == "__main__":
|
190 |
+
# Test the chatbot
|
191 |
+
test_queries = [
|
192 |
+
"What is Codingo?",
|
193 |
+
"How does it work?",
|
194 |
+
"What makes Codingo special?",
|
195 |
+
"How can I improve my profile?",
|
196 |
+
"Is it free?"
|
197 |
+
]
|
198 |
+
|
199 |
+
print("Testing chatbot...")
|
200 |
+
for q in test_queries:
|
201 |
+
response = get_chatbot_response(q)
|
202 |
+
print(f"\nQ: {q}")
|
203 |
+
print(f"A: {response}")
|
204 |
+
print("-" * 50)
|