Spaces:
Paused
Paused
Commit
·
9e72d2c
1
Parent(s):
22b00f2
updated
Browse files
backend/models/resume_parser/resume_to_features.py
CHANGED
|
@@ -1,39 +1,251 @@
|
|
| 1 |
import os
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
def
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"""
|
| 15 |
try:
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
except Exception as e:
|
| 19 |
-
print(f"Error
|
| 20 |
return {
|
| 21 |
'name': '',
|
| 22 |
'email': '',
|
| 23 |
'mobile_number': '',
|
| 24 |
'skills': [],
|
| 25 |
'experience': [],
|
| 26 |
-
'
|
| 27 |
-
'
|
| 28 |
}
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# Build absolute path to the resume file
|
| 34 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 35 |
-
resume_path = os.path.join(current_dir, '../../../data/resumes/Hussein El Saadi - CV.pdf')
|
| 36 |
-
|
| 37 |
-
# Parse and print the extracted data
|
| 38 |
-
data = extract_resume_features(resume_path)
|
| 39 |
-
print(data)
|
|
|
|
| 1 |
import os
|
| 2 |
+
import re
|
| 3 |
+
import json
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import PyPDF2
|
| 6 |
+
from docx import Document
|
| 7 |
+
import textract
|
| 8 |
|
| 9 |
+
class SimpleResumeParser:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
# Common skills keywords
|
| 12 |
+
self.skills_keywords = [
|
| 13 |
+
'python', 'javascript', 'java', 'c++', 'c#', 'php', 'ruby', 'go', 'rust',
|
| 14 |
+
'html', 'css', 'react', 'angular', 'vue', 'node.js', 'express', 'django',
|
| 15 |
+
'flask', 'spring', 'laravel', 'rails', 'asp.net', 'jquery', 'bootstrap',
|
| 16 |
+
'sql', 'mysql', 'postgresql', 'mongodb', 'redis', 'elasticsearch',
|
| 17 |
+
'aws', 'azure', 'gcp', 'docker', 'kubernetes', 'jenkins', 'git', 'github',
|
| 18 |
+
'machine learning', 'deep learning', 'tensorflow', 'pytorch', 'scikit-learn',
|
| 19 |
+
'data analysis', 'pandas', 'numpy', 'matplotlib', 'tableau', 'power bi',
|
| 20 |
+
'agile', 'scrum', 'devops', 'ci/cd', 'microservices', 'api', 'rest', 'graphql'
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
# Education keywords
|
| 24 |
+
self.education_keywords = [
|
| 25 |
+
'bachelor', 'master', 'phd', 'degree', 'university', 'college', 'institute',
|
| 26 |
+
'computer science', 'engineering', 'mathematics', 'physics', 'chemistry',
|
| 27 |
+
'business', 'mba', 'certification', 'diploma'
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# Experience keywords
|
| 31 |
+
self.experience_keywords = [
|
| 32 |
+
'experience', 'worked', 'developed', 'managed', 'led', 'created', 'built',
|
| 33 |
+
'designed', 'implemented', 'maintained', 'optimized', 'improved', 'years'
|
| 34 |
+
]
|
| 35 |
|
| 36 |
+
def extract_text_from_pdf(self, file_path):
|
| 37 |
+
"""Extract text from PDF file"""
|
| 38 |
+
try:
|
| 39 |
+
with open(file_path, 'rb') as file:
|
| 40 |
+
reader = PyPDF2.PdfReader(file)
|
| 41 |
+
text = ""
|
| 42 |
+
for page in reader.pages:
|
| 43 |
+
text += page.extract_text() + "\n"
|
| 44 |
+
return text
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"Error reading PDF: {e}")
|
| 47 |
+
return ""
|
| 48 |
+
|
| 49 |
+
def extract_text_from_docx(self, file_path):
|
| 50 |
+
"""Extract text from DOCX file"""
|
| 51 |
+
try:
|
| 52 |
+
doc = Document(file_path)
|
| 53 |
+
text = ""
|
| 54 |
+
for paragraph in doc.paragraphs:
|
| 55 |
+
text += paragraph.text + "\n"
|
| 56 |
+
return text
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error reading DOCX: {e}")
|
| 59 |
+
return ""
|
| 60 |
+
|
| 61 |
+
def extract_text_from_doc(self, file_path):
|
| 62 |
+
"""Extract text from DOC file using textract"""
|
| 63 |
+
try:
|
| 64 |
+
text = textract.process(file_path).decode('utf-8')
|
| 65 |
+
return text
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Error reading DOC: {e}")
|
| 68 |
+
return ""
|
| 69 |
+
|
| 70 |
+
def extract_text(self, file_path):
|
| 71 |
+
"""Extract text based on file extension"""
|
| 72 |
+
file_extension = Path(file_path).suffix.lower()
|
| 73 |
+
|
| 74 |
+
if file_extension == '.pdf':
|
| 75 |
+
return self.extract_text_from_pdf(file_path)
|
| 76 |
+
elif file_extension == '.docx':
|
| 77 |
+
return self.extract_text_from_docx(file_path)
|
| 78 |
+
elif file_extension == '.doc':
|
| 79 |
+
return self.extract_text_from_doc(file_path)
|
| 80 |
+
else:
|
| 81 |
+
return ""
|
| 82 |
+
|
| 83 |
+
def extract_email(self, text):
|
| 84 |
+
"""Extract email addresses from text"""
|
| 85 |
+
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
|
| 86 |
+
emails = re.findall(email_pattern, text)
|
| 87 |
+
return emails[0] if emails else ""
|
| 88 |
+
|
| 89 |
+
def extract_phone(self, text):
|
| 90 |
+
"""Extract phone numbers from text"""
|
| 91 |
+
phone_patterns = [
|
| 92 |
+
r'\+?1?[-.\s]?$$?([0-9]{3})$$?[-.\s]?([0-9]{3})[-.\s]?([0-9]{4})',
|
| 93 |
+
r'\+?([0-9]{1,3})[-.\s]?([0-9]{3,4})[-.\s]?([0-9]{3,4})[-.\s]?([0-9]{3,4})',
|
| 94 |
+
r'(\d{3}[-.\s]?\d{3}[-.\s]?\d{4})',
|
| 95 |
+
r'($$\d{3}$$\s?\d{3}[-.\s]?\d{4})'
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
for pattern in phone_patterns:
|
| 99 |
+
matches = re.findall(pattern, text)
|
| 100 |
+
if matches:
|
| 101 |
+
if isinstance(matches[0], tuple):
|
| 102 |
+
return ''.join(matches[0])
|
| 103 |
+
return matches[0]
|
| 104 |
+
return ""
|
| 105 |
+
|
| 106 |
+
def extract_name(self, text):
|
| 107 |
+
"""Extract name from text (simple heuristic)"""
|
| 108 |
+
lines = text.split('\n')
|
| 109 |
+
for line in lines[:5]: # Check first 5 lines
|
| 110 |
+
line = line.strip()
|
| 111 |
+
if len(line.split()) == 2 and line.replace(' ', '').isalpha():
|
| 112 |
+
# Simple check: two words, all alphabetic
|
| 113 |
+
if not any(keyword in line.lower() for keyword in ['resume', 'cv', 'curriculum']):
|
| 114 |
+
return line.title()
|
| 115 |
+
return ""
|
| 116 |
|
| 117 |
+
def extract_skills(self, text):
|
| 118 |
+
"""Extract skills from text"""
|
| 119 |
+
text_lower = text.lower()
|
| 120 |
+
found_skills = []
|
| 121 |
+
|
| 122 |
+
for skill in self.skills_keywords:
|
| 123 |
+
if skill.lower() in text_lower:
|
| 124 |
+
found_skills.append(skill.title())
|
| 125 |
+
|
| 126 |
+
# Remove duplicates and return
|
| 127 |
+
return list(set(found_skills))
|
| 128 |
|
| 129 |
+
def extract_education(self, text):
|
| 130 |
+
"""Extract education information"""
|
| 131 |
+
text_lower = text.lower()
|
| 132 |
+
education = []
|
| 133 |
+
|
| 134 |
+
# Look for education section
|
| 135 |
+
education_section = ""
|
| 136 |
+
lines = text.split('\n')
|
| 137 |
+
in_education_section = False
|
| 138 |
+
|
| 139 |
+
for line in lines:
|
| 140 |
+
line_lower = line.lower()
|
| 141 |
+
if any(keyword in line_lower for keyword in ['education', 'academic', 'qualification']):
|
| 142 |
+
in_education_section = True
|
| 143 |
+
continue
|
| 144 |
+
elif in_education_section and any(keyword in line_lower for keyword in ['experience', 'work', 'employment', 'project']):
|
| 145 |
+
break
|
| 146 |
+
elif in_education_section:
|
| 147 |
+
education_section += line + " "
|
| 148 |
+
|
| 149 |
+
# Extract degrees and institutions
|
| 150 |
+
for keyword in self.education_keywords:
|
| 151 |
+
if keyword in text_lower:
|
| 152 |
+
# Find context around the keyword
|
| 153 |
+
pattern = rf'.{{0,50}}{re.escape(keyword)}.{{0,50}}'
|
| 154 |
+
matches = re.findall(pattern, text, re.IGNORECASE)
|
| 155 |
+
education.extend(matches)
|
| 156 |
+
|
| 157 |
+
return education[:3] # Return top 3 education entries
|
| 158 |
+
|
| 159 |
+
def extract_experience(self, text):
|
| 160 |
+
"""Extract work experience"""
|
| 161 |
+
experience = []
|
| 162 |
+
lines = text.split('\n')
|
| 163 |
+
|
| 164 |
+
# Look for experience section
|
| 165 |
+
in_experience_section = False
|
| 166 |
+
current_experience = ""
|
| 167 |
+
|
| 168 |
+
for line in lines:
|
| 169 |
+
line_lower = line.lower()
|
| 170 |
+
if any(keyword in line_lower for keyword in ['experience', 'work', 'employment', 'career']):
|
| 171 |
+
in_experience_section = True
|
| 172 |
+
continue
|
| 173 |
+
elif in_experience_section and any(keyword in line_lower for keyword in ['education', 'skill', 'project']):
|
| 174 |
+
if current_experience:
|
| 175 |
+
experience.append(current_experience.strip())
|
| 176 |
+
break
|
| 177 |
+
elif in_experience_section:
|
| 178 |
+
if line.strip():
|
| 179 |
+
current_experience += line + " "
|
| 180 |
+
elif current_experience:
|
| 181 |
+
experience.append(current_experience.strip())
|
| 182 |
+
current_experience = ""
|
| 183 |
+
|
| 184 |
+
if current_experience:
|
| 185 |
+
experience.append(current_experience.strip())
|
| 186 |
+
|
| 187 |
+
return experience[:3] # Return top 3 experience entries
|
| 188 |
+
|
| 189 |
+
def extract_summary(self, text):
|
| 190 |
+
"""Extract summary/objective"""
|
| 191 |
+
lines = text.split('\n')
|
| 192 |
+
summary = ""
|
| 193 |
+
|
| 194 |
+
for i, line in enumerate(lines):
|
| 195 |
+
line_lower = line.lower()
|
| 196 |
+
if any(keyword in line_lower for keyword in ['summary', 'objective', 'profile', 'about']):
|
| 197 |
+
# Get next few lines as summary
|
| 198 |
+
summary_lines = lines[i+1:i+4]
|
| 199 |
+
summary = ' '.join([l.strip() for l in summary_lines if l.strip()])
|
| 200 |
+
break
|
| 201 |
+
|
| 202 |
+
return summary[:200] # Limit to 200 characters
|
| 203 |
+
|
| 204 |
+
def extract_resume_features(file_path):
|
| 205 |
+
"""
|
| 206 |
+
Main function to extract features from resume
|
| 207 |
+
Returns a dictionary with extracted information
|
| 208 |
"""
|
| 209 |
try:
|
| 210 |
+
parser = SimpleResumeParser()
|
| 211 |
+
text = parser.extract_text(file_path)
|
| 212 |
+
|
| 213 |
+
if not text:
|
| 214 |
+
return {
|
| 215 |
+
'name': '',
|
| 216 |
+
'email': '',
|
| 217 |
+
'mobile_number': '',
|
| 218 |
+
'skills': [],
|
| 219 |
+
'experience': [],
|
| 220 |
+
'education': [],
|
| 221 |
+
'summary': ''
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
# Extract all features
|
| 225 |
+
features = {
|
| 226 |
+
'name': parser.extract_name(text),
|
| 227 |
+
'email': parser.extract_email(text),
|
| 228 |
+
'mobile_number': parser.extract_phone(text),
|
| 229 |
+
'skills': parser.extract_skills(text),
|
| 230 |
+
'experience': parser.extract_experience(text),
|
| 231 |
+
'education': parser.extract_education(text),
|
| 232 |
+
'summary': parser.extract_summary(text)
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
return features
|
| 236 |
+
|
| 237 |
except Exception as e:
|
| 238 |
+
print(f"Error extracting resume features: {e}")
|
| 239 |
return {
|
| 240 |
'name': '',
|
| 241 |
'email': '',
|
| 242 |
'mobile_number': '',
|
| 243 |
'skills': [],
|
| 244 |
'experience': [],
|
| 245 |
+
'education': [],
|
| 246 |
+
'summary': ''
|
| 247 |
}
|
| 248 |
|
| 249 |
+
# For backward compatibility
|
| 250 |
+
def parse_resume(file_path):
|
| 251 |
+
return extract_resume_features(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|