Spaces:
Paused
Paused
Commit
·
a1b807c
1
Parent(s):
3e2c190
back version
Browse files- backend/routes/interview_api.py +49 -39
- backend/services/interview_engine.py +62 -89
- backend/templates/interview.html +65 -92
backend/routes/interview_api.py
CHANGED
@@ -187,23 +187,22 @@ def download_report(application_id: int):
|
|
187 |
logging.error(f"Error generating report for application {application_id}: {exc}")
|
188 |
return jsonify({"error": "Failed to generate report"}), 500
|
189 |
|
190 |
-
# Modified process_answer endpoint - replace the existing one with this:
|
191 |
-
|
192 |
@interview_api.route("/process_answer", methods=["POST"])
|
193 |
@login_required
|
194 |
def process_answer():
|
195 |
"""
|
196 |
-
Process a user's answer and return a
|
197 |
-
|
198 |
"""
|
199 |
try:
|
200 |
data = request.get_json() or {}
|
201 |
answer = data.get("answer", "").strip()
|
202 |
question_idx = data.get("questionIndex", 0)
|
|
|
|
|
|
|
|
|
203 |
job_id = data.get("job_id")
|
204 |
-
|
205 |
-
# NEW: Get conversation history if provided
|
206 |
-
conversation_history = data.get("conversation_history", [])
|
207 |
|
208 |
if not answer:
|
209 |
return jsonify({"error": "No answer provided."}), 400
|
@@ -211,53 +210,64 @@ def process_answer():
|
|
211 |
# Get the current question for evaluation context
|
212 |
current_question = data.get("current_question", "Tell me about yourself")
|
213 |
|
214 |
-
# Evaluate the answer
|
215 |
evaluation_result = evaluate_answer(current_question, answer)
|
216 |
|
217 |
-
# Add current Q&A to conversation history
|
218 |
-
conversation_history.append((current_question, answer))
|
219 |
-
|
220 |
# Determine the number of questions configured for this job
|
221 |
total_questions = 3
|
222 |
-
job_role = "Software Developer" # Default
|
223 |
-
|
224 |
if job_id is not None:
|
225 |
try:
|
226 |
job = Job.query.get(int(job_id))
|
227 |
-
if job:
|
228 |
-
|
229 |
-
total_questions = job.num_questions
|
230 |
-
job_role = job.role # Get the actual job role
|
231 |
except Exception:
|
|
|
232 |
pass
|
233 |
|
234 |
-
# Check
|
|
|
|
|
235 |
is_complete = question_idx >= (total_questions - 1)
|
236 |
|
237 |
next_question_text = None
|
238 |
audio_url = None
|
239 |
|
240 |
if not is_complete:
|
241 |
-
#
|
242 |
-
|
243 |
-
|
244 |
-
#
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
252 |
)
|
253 |
-
|
254 |
-
# If the evaluation had a good score, we might want to prepend extra praise
|
255 |
-
if evaluation_result.get("score") == "Excellent":
|
256 |
-
next_question_text = followup
|
257 |
-
else:
|
258 |
-
next_question_text = followup
|
259 |
|
260 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
try:
|
262 |
audio_dir = "/tmp/audio"
|
263 |
os.makedirs(audio_dir, exist_ok=True)
|
@@ -277,14 +287,14 @@ def process_answer():
|
|
277 |
"next_question": next_question_text,
|
278 |
"audio_url": audio_url,
|
279 |
"evaluation": evaluation_result,
|
280 |
-
"is_complete": is_complete
|
281 |
-
"conversation_history": conversation_history # Return updated history
|
282 |
})
|
283 |
|
284 |
except Exception as e:
|
285 |
logging.error(f"Error in process_answer: {e}")
|
286 |
-
return jsonify({"error": "Error processing answer. Please try again."}), 500
|
287 |
|
|
|
288 |
@login_required
|
289 |
def get_audio(filename: str):
|
290 |
"""Serve previously generated TTS audio from the /tmp/audio directory."""
|
|
|
187 |
logging.error(f"Error generating report for application {application_id}: {exc}")
|
188 |
return jsonify({"error": "Failed to generate report"}), 500
|
189 |
|
|
|
|
|
190 |
@interview_api.route("/process_answer", methods=["POST"])
|
191 |
@login_required
|
192 |
def process_answer():
|
193 |
"""
|
194 |
+
Process a user's answer and return a follow‑up question along with an
|
195 |
+
evaluation. Always responds with JSON.
|
196 |
"""
|
197 |
try:
|
198 |
data = request.get_json() or {}
|
199 |
answer = data.get("answer", "").strip()
|
200 |
question_idx = data.get("questionIndex", 0)
|
201 |
+
|
202 |
+
# ``job_id`` is required to determine how many total questions are
|
203 |
+
# expected for this interview. Without it we fall back to a
|
204 |
+
# three‑question interview.
|
205 |
job_id = data.get("job_id")
|
|
|
|
|
|
|
206 |
|
207 |
if not answer:
|
208 |
return jsonify({"error": "No answer provided."}), 400
|
|
|
210 |
# Get the current question for evaluation context
|
211 |
current_question = data.get("current_question", "Tell me about yourself")
|
212 |
|
213 |
+
# Evaluate the answer
|
214 |
evaluation_result = evaluate_answer(current_question, answer)
|
215 |
|
|
|
|
|
|
|
216 |
# Determine the number of questions configured for this job
|
217 |
total_questions = 3
|
|
|
|
|
218 |
if job_id is not None:
|
219 |
try:
|
220 |
job = Job.query.get(int(job_id))
|
221 |
+
if job and job.num_questions and job.num_questions > 0:
|
222 |
+
total_questions = job.num_questions
|
|
|
|
|
223 |
except Exception:
|
224 |
+
# If lookup fails, keep default
|
225 |
pass
|
226 |
|
227 |
+
# Check completion. ``question_idx`` is zero‑based; the last index
|
228 |
+
# corresponds to ``total_questions - 1``. When the current index
|
229 |
+
# reaches or exceeds this value, the interview is complete.
|
230 |
is_complete = question_idx >= (total_questions - 1)
|
231 |
|
232 |
next_question_text = None
|
233 |
audio_url = None
|
234 |
|
235 |
if not is_complete:
|
236 |
+
# Follow‑up question bank. These are used for indices 1 .. n‑2.
|
237 |
+
# The final question (last index) probes salary expectations and
|
238 |
+
# working preferences. If the recruiter has configured fewer
|
239 |
+
# questions than the number of entries here, only the first
|
240 |
+
# appropriate number will be used.
|
241 |
+
follow_up_questions = [
|
242 |
+
"Can you describe a challenging project you've worked on and how you overcame the difficulties?",
|
243 |
+
"What is your favorite machine learning algorithm and why?",
|
244 |
+
"How do you stay up-to-date with advancements in AI?",
|
245 |
+
"Describe a time you had to learn a new technology quickly. How did you approach it?"
|
246 |
+
]
|
247 |
+
final_question = (
|
248 |
+
"What are your salary expectations? Are you looking for a full-time or part-time role, "
|
249 |
+
"and do you prefer remote or on-site work?"
|
250 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
# Compute the next index (zero‑based) for the upcoming question
|
253 |
+
next_idx = question_idx + 1
|
254 |
+
|
255 |
+
# Determine which question to ask next. If next_idx is the last
|
256 |
+
# question (i.e. equals total_questions - 1), use the final
|
257 |
+
# question. Otherwise, select a follow‑up question from the
|
258 |
+
# bank based on ``next_idx - 1`` (because index 0 is for the
|
259 |
+
# first follow‑up). If out of range, cycle through the list.
|
260 |
+
if next_idx == (total_questions - 1):
|
261 |
+
next_question_text = final_question
|
262 |
+
else:
|
263 |
+
if follow_up_questions:
|
264 |
+
idx_in_bank = (next_idx - 1) % len(follow_up_questions)
|
265 |
+
next_question_text = follow_up_questions[idx_in_bank]
|
266 |
+
else:
|
267 |
+
# Fallback if no follow‑ups are defined
|
268 |
+
next_question_text = "Do you have any questions about the role or our company?"
|
269 |
+
|
270 |
+
# Try to generate audio for the next question
|
271 |
try:
|
272 |
audio_dir = "/tmp/audio"
|
273 |
os.makedirs(audio_dir, exist_ok=True)
|
|
|
287 |
"next_question": next_question_text,
|
288 |
"audio_url": audio_url,
|
289 |
"evaluation": evaluation_result,
|
290 |
+
"is_complete": is_complete
|
|
|
291 |
})
|
292 |
|
293 |
except Exception as e:
|
294 |
logging.error(f"Error in process_answer: {e}")
|
295 |
+
return jsonify({"error": "Error processing answer. Please try again."}), 500
|
296 |
|
297 |
+
@interview_api.route("/audio/<string:filename>", methods=["GET"])
|
298 |
@login_required
|
299 |
def get_audio(filename: str):
|
300 |
"""Serve previously generated TTS audio from the /tmp/audio directory."""
|
backend/services/interview_engine.py
CHANGED
@@ -9,7 +9,6 @@ import tempfile
|
|
9 |
import shutil
|
10 |
import torch
|
11 |
|
12 |
-
# [KEEPING ALL THE INITIALIZATION CODE EXACTLY THE SAME]
|
13 |
if torch.cuda.is_available():
|
14 |
print("🔥 CUDA Available")
|
15 |
print(torch.cuda.get_device_name(0))
|
@@ -21,9 +20,17 @@ print("🧠 GPU:", torch.cuda.get_device_name(0))
|
|
21 |
print("💡 cuDNN version:", torch.backends.cudnn.version())
|
22 |
print("💥 cuDNN enabled:", torch.backends.cudnn.is_available())
|
23 |
|
|
|
|
|
24 |
# Initialize models
|
25 |
chat_groq_api = os.getenv("GROQ_API_KEY")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if chat_groq_api:
|
28 |
try:
|
29 |
groq_llm = ChatGroq(
|
@@ -39,11 +46,31 @@ else:
|
|
39 |
|
40 |
if groq_llm is None:
|
41 |
class DummyGroq:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def invoke(self, prompt: str):
|
|
|
|
|
|
|
|
|
43 |
return "Tell me about yourself and why you're interested in this position."
|
|
|
44 |
groq_llm = DummyGroq()
|
45 |
|
46 |
# Initialize Whisper model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
whisper_model = None
|
48 |
|
49 |
def load_whisper_model():
|
@@ -52,11 +79,16 @@ def load_whisper_model():
|
|
52 |
try:
|
53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
compute_type = "float16" if device == "cuda" else "int8"
|
|
|
|
|
|
|
|
|
55 |
model_name = os.getenv("WHISPER_MODEL_NAME", "tiny")
|
56 |
whisper_model = WhisperModel(model_name, device=device, compute_type=compute_type)
|
57 |
logging.info(f"Whisper model '{model_name}' loaded on {device} with {compute_type}")
|
58 |
except Exception as e:
|
59 |
logging.error(f"Error loading Whisper model: {e}")
|
|
|
60 |
whisper_model = WhisperModel(model_name if 'model_name' in locals() else "tiny", device="cpu", compute_type="int8")
|
61 |
return whisper_model
|
62 |
|
@@ -75,11 +107,12 @@ def generate_first_question(profile, job):
|
|
75 |
Generate an appropriate opening interview question that is professional and relevant.
|
76 |
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
|
77 |
If the interview is for a technical role, focus on technical skills. Make the question related
|
78 |
-
to the job role and the candidate's background.
|
79 |
"""
|
80 |
|
81 |
response = groq_llm.invoke(prompt)
|
82 |
|
|
|
83 |
if hasattr(response, 'content'):
|
84 |
question = response.content.strip()
|
85 |
elif isinstance(response, str):
|
@@ -87,6 +120,7 @@ def generate_first_question(profile, job):
|
|
87 |
else:
|
88 |
question = str(response).strip()
|
89 |
|
|
|
90 |
if not question or len(question) < 10:
|
91 |
question = "Tell me about yourself and why you're interested in this position."
|
92 |
|
@@ -97,77 +131,15 @@ def generate_first_question(profile, job):
|
|
97 |
logging.error(f"Error generating first question: {e}")
|
98 |
return "Tell me about yourself and why you're interested in this position."
|
99 |
|
100 |
-
# NEW FUNCTION: Generate dynamic follow-up questions based on the conversation
|
101 |
-
def generate_dynamic_followup(previous_question, candidate_answer, job_role, conversation_history=None, question_number=1, total_questions=3):
|
102 |
-
"""Generate a dynamic follow-up question based on the candidate's answer"""
|
103 |
-
try:
|
104 |
-
# Build conversation context
|
105 |
-
context = ""
|
106 |
-
if conversation_history:
|
107 |
-
for q, a in conversation_history:
|
108 |
-
context += f"\nQ: {q}\nA: {a}\n"
|
109 |
-
|
110 |
-
prompt = f"""
|
111 |
-
You are an experienced interviewer conducting an interview for a {job_role} position.
|
112 |
-
|
113 |
-
Previous conversation:
|
114 |
-
{context}
|
115 |
-
|
116 |
-
Current question: {previous_question}
|
117 |
-
Candidate's answer: {candidate_answer}
|
118 |
-
|
119 |
-
This is question {question_number + 1} out of {total_questions} total questions.
|
120 |
-
|
121 |
-
Your task is to:
|
122 |
-
1. First, acknowledge their answer appropriately (e.g., "That's interesting", "Great point", "I see", "Excellent experience with...", etc.)
|
123 |
-
2. If the answer was particularly good, give brief positive feedback
|
124 |
-
3. Then ask a natural follow-up question that:
|
125 |
-
- Builds on what they just said
|
126 |
-
- Digs deeper into their experience or knowledge
|
127 |
-
- Relates to the job requirements
|
128 |
-
- Feels like a natural conversation flow
|
129 |
-
|
130 |
-
Keep your response conversational and professional. The acknowledgment should be brief (1-2 sentences max).
|
131 |
-
|
132 |
-
If this is the last question (question {total_questions}), make it about salary expectations, work preferences (remote/onsite), and availability.
|
133 |
-
|
134 |
-
Respond with ONLY your acknowledgment and question, no additional formatting or metadata.
|
135 |
-
"""
|
136 |
-
|
137 |
-
response = groq_llm.invoke(prompt)
|
138 |
-
|
139 |
-
if hasattr(response, 'content'):
|
140 |
-
question = response.content.strip()
|
141 |
-
elif isinstance(response, str):
|
142 |
-
question = response.strip()
|
143 |
-
else:
|
144 |
-
question = str(response).strip()
|
145 |
-
|
146 |
-
if not question or len(question) < 10:
|
147 |
-
# Fallback questions with acknowledgments
|
148 |
-
fallbacks = [
|
149 |
-
"That's a good answer. Can you tell me more about a specific challenge you faced in that situation?",
|
150 |
-
"Interesting perspective. How do you stay updated with the latest developments in your field?",
|
151 |
-
"I appreciate your detailed response. What would you say is your greatest professional achievement?",
|
152 |
-
"Thank you for sharing that. Where do you see yourself professionally in the next 3-5 years?"
|
153 |
-
]
|
154 |
-
question = fallbacks[question_number % len(fallbacks)]
|
155 |
-
|
156 |
-
logging.info(f"Generated dynamic follow-up: {question}")
|
157 |
-
return question
|
158 |
-
|
159 |
-
except Exception as e:
|
160 |
-
logging.error(f"Error generating dynamic follow-up: {e}")
|
161 |
-
return "Thank you for that answer. Can you tell me more about your experience in this area?"
|
162 |
-
|
163 |
-
# [KEEPING ALL OTHER FUNCTIONS EXACTLY THE SAME]
|
164 |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
165 |
"""Synchronous wrapper for edge-tts with better error handling"""
|
166 |
try:
|
|
|
167 |
if not text or not text.strip():
|
168 |
logging.error("Empty text provided for TTS")
|
169 |
return None
|
170 |
|
|
|
171 |
directory = os.path.dirname(output_path)
|
172 |
if not directory:
|
173 |
directory = "/tmp/audio"
|
@@ -175,6 +147,7 @@ def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
|
175 |
|
176 |
os.makedirs(directory, exist_ok=True)
|
177 |
|
|
|
178 |
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
|
179 |
try:
|
180 |
with open(test_file, 'w') as f:
|
@@ -183,6 +156,7 @@ def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
|
183 |
logging.info(f"Directory {directory} is writable")
|
184 |
except (PermissionError, OSError) as e:
|
185 |
logging.error(f"Directory {directory} is not writable: {e}")
|
|
|
186 |
directory = "/tmp/audio"
|
187 |
output_path = os.path.join(directory, os.path.basename(output_path))
|
188 |
os.makedirs(directory, exist_ok=True)
|
@@ -196,9 +170,11 @@ def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
|
196 |
logging.error(f"Error in async TTS generation: {e}")
|
197 |
raise
|
198 |
|
|
|
199 |
try:
|
200 |
loop = asyncio.get_event_loop()
|
201 |
if loop.is_running():
|
|
|
202 |
import threading
|
203 |
import concurrent.futures
|
204 |
|
@@ -212,10 +188,11 @@ def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
|
212 |
|
213 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
214 |
future = executor.submit(run_in_thread)
|
215 |
-
future.result(timeout=30)
|
216 |
else:
|
217 |
loop.run_until_complete(generate_audio())
|
218 |
except RuntimeError:
|
|
|
219 |
loop = asyncio.new_event_loop()
|
220 |
asyncio.set_event_loop(loop)
|
221 |
try:
|
@@ -223,9 +200,10 @@ def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
|
223 |
finally:
|
224 |
loop.close()
|
225 |
|
|
|
226 |
if os.path.exists(output_path):
|
227 |
file_size = os.path.getsize(output_path)
|
228 |
-
if file_size > 1000:
|
229 |
logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
|
230 |
return output_path
|
231 |
else:
|
@@ -257,7 +235,7 @@ def convert_webm_to_wav(webm_path, wav_path):
|
|
257 |
logging.error(f"Error converting audio: {e}")
|
258 |
return None
|
259 |
|
260 |
-
import subprocess
|
261 |
|
262 |
def whisper_stt(audio_path):
|
263 |
"""Speech-to-text using Faster-Whisper"""
|
@@ -266,10 +244,11 @@ def whisper_stt(audio_path):
|
|
266 |
logging.error(f"Audio file is empty or missing: {audio_path}")
|
267 |
return ""
|
268 |
|
|
|
269 |
wav_path = audio_path.replace(".webm", ".wav")
|
270 |
cmd = [
|
271 |
"ffmpeg",
|
272 |
-
"-y",
|
273 |
"-i", audio_path,
|
274 |
"-ar", "16000",
|
275 |
"-ac", "1",
|
@@ -290,15 +269,13 @@ def whisper_stt(audio_path):
|
|
290 |
logging.error(f"Error in STT: {e}")
|
291 |
return ""
|
292 |
|
293 |
-
# ENHANCED EVALUATION FUNCTION with more conversational feedback
|
294 |
def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
|
295 |
-
"""Evaluate candidate's answer with
|
296 |
try:
|
297 |
if not answer or not answer.strip():
|
298 |
return {
|
299 |
"score": "Poor",
|
300 |
-
"feedback": "No answer provided."
|
301 |
-
"acknowledgment": "I didn't catch your response. Could you please elaborate?"
|
302 |
}
|
303 |
|
304 |
prompt = f"""
|
@@ -308,19 +285,18 @@ def evaluate_answer(question, answer, job_role="Software Developer", seniority="
|
|
308 |
Candidate Answer: {answer}
|
309 |
|
310 |
Evaluate based on technical correctness, clarity, and relevance.
|
311 |
-
Provide
|
312 |
-
|
313 |
-
|
314 |
-
3. Brief constructive feedback (1-2 sentences)
|
315 |
|
316 |
Respond in this exact format:
|
317 |
-
Acknowledgment: [Your brief acknowledgment]
|
318 |
Score: [Poor/Medium/Good/Excellent]
|
319 |
Feedback: [Your brief feedback here]
|
320 |
"""
|
321 |
|
322 |
response = groq_llm.invoke(prompt)
|
323 |
|
|
|
324 |
if hasattr(response, 'content'):
|
325 |
response_text = response.content.strip()
|
326 |
elif isinstance(response, str):
|
@@ -328,34 +304,31 @@ def evaluate_answer(question, answer, job_role="Software Developer", seniority="
|
|
328 |
else:
|
329 |
response_text = str(response).strip()
|
330 |
|
|
|
331 |
lines = response_text.split('\n')
|
332 |
-
score = "Medium"
|
333 |
-
feedback = "Good answer, but could be more detailed."
|
334 |
-
acknowledgment = "Thank you for your response."
|
335 |
|
336 |
for line in lines:
|
337 |
line = line.strip()
|
338 |
-
if line.startswith('
|
339 |
-
acknowledgment = line.replace('Acknowledgment:', '').strip()
|
340 |
-
elif line.startswith('Score:'):
|
341 |
score = line.replace('Score:', '').strip()
|
342 |
elif line.startswith('Feedback:'):
|
343 |
feedback = line.replace('Feedback:', '').strip()
|
344 |
|
|
|
345 |
valid_scores = ["Poor", "Medium", "Good", "Excellent"]
|
346 |
if score not in valid_scores:
|
347 |
score = "Medium"
|
348 |
|
349 |
return {
|
350 |
"score": score,
|
351 |
-
"feedback": feedback
|
352 |
-
"acknowledgment": acknowledgment
|
353 |
}
|
354 |
|
355 |
except Exception as e:
|
356 |
logging.error(f"Error evaluating answer: {e}")
|
357 |
return {
|
358 |
"score": "Medium",
|
359 |
-
"feedback": "Unable to evaluate answer at this time."
|
360 |
-
"acknowledgment": "Thank you for your response."
|
361 |
}
|
|
|
9 |
import shutil
|
10 |
import torch
|
11 |
|
|
|
12 |
if torch.cuda.is_available():
|
13 |
print("🔥 CUDA Available")
|
14 |
print(torch.cuda.get_device_name(0))
|
|
|
20 |
print("💡 cuDNN version:", torch.backends.cudnn.version())
|
21 |
print("💥 cuDNN enabled:", torch.backends.cudnn.is_available())
|
22 |
|
23 |
+
|
24 |
+
|
25 |
# Initialize models
|
26 |
chat_groq_api = os.getenv("GROQ_API_KEY")
|
27 |
|
28 |
+
# Attempt to initialize the Groq LLM only if an API key is provided. When
|
29 |
+
# running in environments where the key is unavailable (such as local
|
30 |
+
# development or automated testing), fall back to a simple stub that
|
31 |
+
# generates generic responses. This avoids raising an exception at import
|
32 |
+
# time and allows the rest of the application to run without external
|
33 |
+
# dependencies. See the DummyGroq class defined below.
|
34 |
if chat_groq_api:
|
35 |
try:
|
36 |
groq_llm = ChatGroq(
|
|
|
46 |
|
47 |
if groq_llm is None:
|
48 |
class DummyGroq:
|
49 |
+
"""A fallback language model used when no Groq API key is set.
|
50 |
+
|
51 |
+
The ``invoke`` method of this class returns a simple canned response
|
52 |
+
rather than calling an external API. This ensures that the
|
53 |
+
interview functionality still produces a sensible prompt, albeit
|
54 |
+
without advanced LLM behaviour.
|
55 |
+
"""
|
56 |
def invoke(self, prompt: str):
|
57 |
+
# Provide a very generic question based on the prompt. This
|
58 |
+
# implementation ignores the prompt contents entirely; in a more
|
59 |
+
# sophisticated fallback you could parse ``prompt`` to tailor
|
60 |
+
# responses.
|
61 |
return "Tell me about yourself and why you're interested in this position."
|
62 |
+
|
63 |
groq_llm = DummyGroq()
|
64 |
|
65 |
# Initialize Whisper model
|
66 |
+
#
|
67 |
+
# Loading the Whisper model can take several seconds on first use because the
|
68 |
+
# model weights must be downloaded from Hugging Face. This delay can cause
|
69 |
+
# the API call to ``/api/transcribe_audio`` to appear stuck while the model
|
70 |
+
# downloads. To mitigate this, we allow the model size to be configured via
|
71 |
+
# the ``WHISPER_MODEL_NAME`` environment variable and preload the model when
|
72 |
+
# this module is imported. Using a smaller model (e.g. "tiny" or "base.en")
|
73 |
+
# reduces download size and inference time considerably.
|
74 |
whisper_model = None
|
75 |
|
76 |
def load_whisper_model():
|
|
|
79 |
try:
|
80 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
compute_type = "float16" if device == "cuda" else "int8"
|
82 |
+
# Allow overriding the model size via environment. Default to a
|
83 |
+
# lightweight model to improve startup times. Available options
|
84 |
+
# include: tiny, base, base.en, small, medium, large. See
|
85 |
+
# https://huggingface.co/ggerganov/whisper.cpp for details.
|
86 |
model_name = os.getenv("WHISPER_MODEL_NAME", "tiny")
|
87 |
whisper_model = WhisperModel(model_name, device=device, compute_type=compute_type)
|
88 |
logging.info(f"Whisper model '{model_name}' loaded on {device} with {compute_type}")
|
89 |
except Exception as e:
|
90 |
logging.error(f"Error loading Whisper model: {e}")
|
91 |
+
# Fallback to CPU
|
92 |
whisper_model = WhisperModel(model_name if 'model_name' in locals() else "tiny", device="cpu", compute_type="int8")
|
93 |
return whisper_model
|
94 |
|
|
|
107 |
Generate an appropriate opening interview question that is professional and relevant.
|
108 |
Keep it concise and clear. Respond with ONLY the question text, no additional formatting.
|
109 |
If the interview is for a technical role, focus on technical skills. Make the question related
|
110 |
+
to the job role and the candidate's background and the previous question.
|
111 |
"""
|
112 |
|
113 |
response = groq_llm.invoke(prompt)
|
114 |
|
115 |
+
# Fix: Handle AIMessage object properly
|
116 |
if hasattr(response, 'content'):
|
117 |
question = response.content.strip()
|
118 |
elif isinstance(response, str):
|
|
|
120 |
else:
|
121 |
question = str(response).strip()
|
122 |
|
123 |
+
# Ensure we have a valid question
|
124 |
if not question or len(question) < 10:
|
125 |
question = "Tell me about yourself and why you're interested in this position."
|
126 |
|
|
|
131 |
logging.error(f"Error generating first question: {e}")
|
132 |
return "Tell me about yourself and why you're interested in this position."
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
|
135 |
"""Synchronous wrapper for edge-tts with better error handling"""
|
136 |
try:
|
137 |
+
# Ensure text is not empty
|
138 |
if not text or not text.strip():
|
139 |
logging.error("Empty text provided for TTS")
|
140 |
return None
|
141 |
|
142 |
+
# Ensure the directory exists and is writable
|
143 |
directory = os.path.dirname(output_path)
|
144 |
if not directory:
|
145 |
directory = "/tmp/audio"
|
|
|
147 |
|
148 |
os.makedirs(directory, exist_ok=True)
|
149 |
|
150 |
+
# Test write permissions with a temporary file
|
151 |
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
|
152 |
try:
|
153 |
with open(test_file, 'w') as f:
|
|
|
156 |
logging.info(f"Directory {directory} is writable")
|
157 |
except (PermissionError, OSError) as e:
|
158 |
logging.error(f"Directory {directory} is not writable: {e}")
|
159 |
+
# Fallback to /tmp
|
160 |
directory = "/tmp/audio"
|
161 |
output_path = os.path.join(directory, os.path.basename(output_path))
|
162 |
os.makedirs(directory, exist_ok=True)
|
|
|
170 |
logging.error(f"Error in async TTS generation: {e}")
|
171 |
raise
|
172 |
|
173 |
+
# Run async function in sync context
|
174 |
try:
|
175 |
loop = asyncio.get_event_loop()
|
176 |
if loop.is_running():
|
177 |
+
# If loop is already running, create a new one in a thread
|
178 |
import threading
|
179 |
import concurrent.futures
|
180 |
|
|
|
188 |
|
189 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
190 |
future = executor.submit(run_in_thread)
|
191 |
+
future.result(timeout=30) # 30 second timeout
|
192 |
else:
|
193 |
loop.run_until_complete(generate_audio())
|
194 |
except RuntimeError:
|
195 |
+
# No event loop exists
|
196 |
loop = asyncio.new_event_loop()
|
197 |
asyncio.set_event_loop(loop)
|
198 |
try:
|
|
|
200 |
finally:
|
201 |
loop.close()
|
202 |
|
203 |
+
# Verify file was created and has content
|
204 |
if os.path.exists(output_path):
|
205 |
file_size = os.path.getsize(output_path)
|
206 |
+
if file_size > 1000: # At least 1KB for a valid audio file
|
207 |
logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
|
208 |
return output_path
|
209 |
else:
|
|
|
235 |
logging.error(f"Error converting audio: {e}")
|
236 |
return None
|
237 |
|
238 |
+
import subprocess # top of the file if not already imported
|
239 |
|
240 |
def whisper_stt(audio_path):
|
241 |
"""Speech-to-text using Faster-Whisper"""
|
|
|
244 |
logging.error(f"Audio file is empty or missing: {audio_path}")
|
245 |
return ""
|
246 |
|
247 |
+
# Convert webm to wav using ffmpeg
|
248 |
wav_path = audio_path.replace(".webm", ".wav")
|
249 |
cmd = [
|
250 |
"ffmpeg",
|
251 |
+
"-y", # overwrite
|
252 |
"-i", audio_path,
|
253 |
"-ar", "16000",
|
254 |
"-ac", "1",
|
|
|
269 |
logging.error(f"Error in STT: {e}")
|
270 |
return ""
|
271 |
|
|
|
272 |
def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
|
273 |
+
"""Evaluate candidate's answer with better error handling"""
|
274 |
try:
|
275 |
if not answer or not answer.strip():
|
276 |
return {
|
277 |
"score": "Poor",
|
278 |
+
"feedback": "No answer provided."
|
|
|
279 |
}
|
280 |
|
281 |
prompt = f"""
|
|
|
285 |
Candidate Answer: {answer}
|
286 |
|
287 |
Evaluate based on technical correctness, clarity, and relevance.
|
288 |
+
Provide a brief evaluation in 1-2 sentences.
|
289 |
+
|
290 |
+
Rate the answer as one of: Poor, Medium, Good, Excellent
|
|
|
291 |
|
292 |
Respond in this exact format:
|
|
|
293 |
Score: [Poor/Medium/Good/Excellent]
|
294 |
Feedback: [Your brief feedback here]
|
295 |
"""
|
296 |
|
297 |
response = groq_llm.invoke(prompt)
|
298 |
|
299 |
+
# Handle AIMessage object properly
|
300 |
if hasattr(response, 'content'):
|
301 |
response_text = response.content.strip()
|
302 |
elif isinstance(response, str):
|
|
|
304 |
else:
|
305 |
response_text = str(response).strip()
|
306 |
|
307 |
+
# Parse the response
|
308 |
lines = response_text.split('\n')
|
309 |
+
score = "Medium" # default
|
310 |
+
feedback = "Good answer, but could be more detailed." # default
|
|
|
311 |
|
312 |
for line in lines:
|
313 |
line = line.strip()
|
314 |
+
if line.startswith('Score:'):
|
|
|
|
|
315 |
score = line.replace('Score:', '').strip()
|
316 |
elif line.startswith('Feedback:'):
|
317 |
feedback = line.replace('Feedback:', '').strip()
|
318 |
|
319 |
+
# Ensure score is valid
|
320 |
valid_scores = ["Poor", "Medium", "Good", "Excellent"]
|
321 |
if score not in valid_scores:
|
322 |
score = "Medium"
|
323 |
|
324 |
return {
|
325 |
"score": score,
|
326 |
+
"feedback": feedback
|
|
|
327 |
}
|
328 |
|
329 |
except Exception as e:
|
330 |
logging.error(f"Error evaluating answer: {e}")
|
331 |
return {
|
332 |
"score": "Medium",
|
333 |
+
"feedback": "Unable to evaluate answer at this time."
|
|
|
334 |
}
|
backend/templates/interview.html
CHANGED
@@ -516,7 +516,6 @@
|
|
516 |
answers: [],
|
517 |
evaluations: []
|
518 |
};
|
519 |
-
this.conversationHistory = [];
|
520 |
this.initializeElements();
|
521 |
this.initializeInterview();
|
522 |
}
|
@@ -840,98 +839,72 @@
|
|
840 |
this.recordingStatus.style.color = '#666';
|
841 |
}
|
842 |
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
if (!answerText || answerText === this.transcriptArea.getAttribute('placeholder')) {
|
849 |
-
this.showError('Please provide an answer before submitting.');
|
850 |
-
return;
|
851 |
-
}
|
852 |
-
|
853 |
-
// Show loading state
|
854 |
-
this.confirmButton.disabled = true;
|
855 |
-
this.confirmLoading.style.display = 'inline-block';
|
856 |
-
this.confirmButton.querySelector('span:first-child').textContent = 'Processing...';
|
857 |
-
|
858 |
-
try {
|
859 |
-
const response = await fetch('/api/interview/process_answer', {
|
860 |
-
method: 'POST',
|
861 |
-
headers: {
|
862 |
-
'Content-Type': 'application/json',
|
863 |
-
},
|
864 |
-
body: JSON.stringify({
|
865 |
-
answer: answerText,
|
866 |
-
questionIndex: this.currentQuestionIndex,
|
867 |
-
job_id: JOB_ID,
|
868 |
-
current_question: this.currentQuestion,
|
869 |
-
conversation_history: this.conversationHistory || [] // Include conversation history
|
870 |
-
})
|
871 |
-
});
|
872 |
-
|
873 |
-
const data = await response.json();
|
874 |
-
|
875 |
-
if (data.success) {
|
876 |
-
// Update conversation history from response
|
877 |
-
if (data.conversation_history) {
|
878 |
-
this.conversationHistory = data.conversation_history;
|
879 |
-
}
|
880 |
-
|
881 |
-
// Store answer and evaluation
|
882 |
-
this.interviewData.answers.push(answerText);
|
883 |
-
this.interviewData.evaluations.push(data.evaluation);
|
884 |
-
|
885 |
-
// Display user's answer
|
886 |
-
this.addUserMessage(answerText);
|
887 |
-
|
888 |
-
// Display evaluation with acknowledgment
|
889 |
-
const evalDiv = document.createElement('div');
|
890 |
-
evalDiv.className = 'ai-message';
|
891 |
-
evalDiv.innerHTML = `
|
892 |
-
<div class="ai-avatar">AI</div>
|
893 |
-
<div class="message-bubble" style="background: #e8f5e9;">
|
894 |
-
<p><strong>${data.evaluation.acknowledgment || 'Thank you for your response.'}</strong></p>
|
895 |
-
<p style="margin-top: 10px;">Score: <span class="evaluation-score">${data.evaluation.score}</span></p>
|
896 |
-
<p style="margin-top: 5px; font-size: 0.9rem; color: #666;">${data.evaluation.feedback}</p>
|
897 |
-
</div>
|
898 |
-
`;
|
899 |
-
this.chatArea.appendChild(evalDiv);
|
900 |
-
this.chatArea.scrollTop = this.chatArea.scrollHeight;
|
901 |
-
|
902 |
-
// Reset input for next question
|
903 |
-
this.resetForNextQuestion();
|
904 |
-
|
905 |
-
if (!data.is_complete) {
|
906 |
-
// Move to next question after a short delay
|
907 |
-
setTimeout(() => {
|
908 |
-
this.currentQuestionIndex++;
|
909 |
-
this.currentQuestion = data.next_question;
|
910 |
-
this.displayQuestion(data.next_question, data.audio_url);
|
911 |
-
this.interviewData.questions.push(data.next_question);
|
912 |
-
}, 3000); // 3 second delay to read evaluation
|
913 |
-
} else {
|
914 |
-
// Interview complete
|
915 |
-
setTimeout(() => {
|
916 |
-
this.showInterviewSummary();
|
917 |
-
}, 2000);
|
918 |
-
}
|
919 |
-
} else {
|
920 |
-
this.showError(data.error || 'Error processing answer');
|
921 |
-
}
|
922 |
-
} catch (error) {
|
923 |
-
console.error('Error submitting answer:', error);
|
924 |
-
this.showError('Error submitting answer. Please try again.');
|
925 |
-
} finally {
|
926 |
-
this.confirmButton.disabled = false;
|
927 |
-
this.confirmLoading.style.display = 'none';
|
928 |
-
this.confirmButton.querySelector('span:first-child').textContent = 'Confirm Answer';
|
929 |
-
}
|
930 |
-
}
|
931 |
-
|
932 |
-
// Also add this property to the constructor of AIInterviewer class:
|
933 |
-
// (Add this line in the constructor after this.interviewData)
|
934 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
935 |
|
936 |
addUserMessage(message) {
|
937 |
const messageDiv = document.createElement('div');
|
|
|
516 |
answers: [],
|
517 |
evaluations: []
|
518 |
};
|
|
|
519 |
this.initializeElements();
|
520 |
this.initializeInterview();
|
521 |
}
|
|
|
839 |
this.recordingStatus.style.color = '#666';
|
840 |
}
|
841 |
|
842 |
+
async submitAnswer() {
|
843 |
+
const answer = this.transcriptArea.textContent.trim();
|
844 |
+
if (!answer) return;
|
845 |
+
|
846 |
+
console.log('Submitting answer:', answer);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
847 |
|
848 |
+
// Show loading state
|
849 |
+
this.confirmButton.disabled = true;
|
850 |
+
this.confirmLoading.style.display = 'inline-block';
|
851 |
+
this.confirmButton.querySelector('span').style.display = 'none';
|
852 |
+
|
853 |
+
// Add user message to chat
|
854 |
+
this.addUserMessage(answer);
|
855 |
+
|
856 |
+
try {
|
857 |
+
const response = await fetch('/api/process_answer', {
|
858 |
+
method: 'POST',
|
859 |
+
headers: {
|
860 |
+
'Content-Type': 'application/json'
|
861 |
+
},
|
862 |
+
body: JSON.stringify({
|
863 |
+
answer: answer,
|
864 |
+
questionIndex: this.currentQuestionIndex,
|
865 |
+
current_question: this.currentQuestion,
|
866 |
+
job_id: JOB_ID
|
867 |
+
})
|
868 |
+
});
|
869 |
+
|
870 |
+
if (!response.ok) {
|
871 |
+
const errorText = await response.text();
|
872 |
+
console.error('Process answer error:', response.status, errorText);
|
873 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
874 |
+
}
|
875 |
+
|
876 |
+
const data = await response.json();
|
877 |
+
console.log('Process answer response:', data);
|
878 |
+
|
879 |
+
if (!data.success) {
|
880 |
+
this.showError(data.error || 'Failed to process answer. Please try again.');
|
881 |
+
return;
|
882 |
+
}
|
883 |
+
|
884 |
+
// Record the user's answer and its evaluation
|
885 |
+
this.interviewData.answers.push(answer);
|
886 |
+
this.interviewData.evaluations.push(data.evaluation || {});
|
887 |
+
|
888 |
+
if (data.is_complete) {
|
889 |
+
console.log('Interview completed');
|
890 |
+
this.showInterviewSummary();
|
891 |
+
} else {
|
892 |
+
console.log('Moving to next question');
|
893 |
+
this.currentQuestionIndex++;
|
894 |
+
this.currentQuestion = data.next_question;
|
895 |
+
this.displayQuestion(data.next_question, data.audio_url);
|
896 |
+
this.interviewData.questions.push(data.next_question);
|
897 |
+
this.resetForNextQuestion();
|
898 |
+
}
|
899 |
+
} catch (error) {
|
900 |
+
console.error('Error submitting answer:', error);
|
901 |
+
this.showError('Connection error. Please try again.');
|
902 |
+
} finally {
|
903 |
+
// Reset button state
|
904 |
+
this.confirmLoading.style.display = 'none';
|
905 |
+
this.confirmButton.querySelector('span').style.display = 'inline';
|
906 |
+
}
|
907 |
+
}
|
908 |
|
909 |
addUserMessage(message) {
|
910 |
const messageDiv = document.createElement('div');
|