Spaces:
Paused
Paused
Commit
·
af02e64
1
Parent(s):
c11e18e
resume parser implemented
Browse files- app.py +41 -21
- backend/services/resume_parser.py +326 -0
- backend/templates/apply.html +2 -2
app.py
CHANGED
@@ -26,6 +26,12 @@ sys.path.append(current_dir)
|
|
26 |
from backend.models.database import db, Job, Application, init_db
|
27 |
from backend.models.user import User
|
28 |
from backend.routes.auth import auth_bp, handle_resume_upload
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
from backend.routes.interview_api import interview_api
|
30 |
# Import additional utilities
|
31 |
import re
|
@@ -175,33 +181,47 @@ def chatbot_endpoint():
|
|
175 |
|
176 |
@app.route('/parse_resume', methods=['POST'])
|
177 |
def parse_resume():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
file = request.files.get('resume')
|
179 |
-
|
|
|
180 |
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
}, 200
|
194 |
|
|
|
195 |
response = {
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
"experience": features.get('experience', []),
|
201 |
-
"education": features.get('education', []),
|
202 |
-
"summary": features.get('summary', '')
|
203 |
}
|
204 |
-
return response, 200
|
205 |
|
206 |
@app.route("/interview/<int:job_id>")
|
207 |
@login_required
|
|
|
26 |
from backend.models.database import db, Job, Application, init_db
|
27 |
from backend.models.user import User
|
28 |
from backend.routes.auth import auth_bp, handle_resume_upload
|
29 |
+
|
30 |
+
# Import the resume parsing helper. This module contains lightweight
|
31 |
+
# heuristics for extracting information from PDF and DOCX files without
|
32 |
+
# relying on heavy external libraries. See
|
33 |
+
# ``codingo/backend/services/resume_parser.py`` for details.
|
34 |
+
from backend.services.resume_parser import parse_resume as _parse_resume_helper
|
35 |
from backend.routes.interview_api import interview_api
|
36 |
# Import additional utilities
|
37 |
import re
|
|
|
181 |
|
182 |
@app.route('/parse_resume', methods=['POST'])
|
183 |
def parse_resume():
|
184 |
+
"""
|
185 |
+
Parse an uploaded resume (PDF or DOCX) and return extracted
|
186 |
+
information in JSON format.
|
187 |
+
|
188 |
+
This endpoint is separate from the main application flow. It saves
|
189 |
+
the uploaded file to a temporary location (via ``handle_resume_upload``)
|
190 |
+
so that recruiters can review the original document later, then
|
191 |
+
invokes a lightweight parser to extract the candidate's name,
|
192 |
+
skills, education and experience. Errors during upload or
|
193 |
+
parsing are reported back to the client.
|
194 |
+
"""
|
195 |
file = request.files.get('resume')
|
196 |
+
if not file or file.filename == '':
|
197 |
+
return jsonify({"error": "No file uploaded"}), 400
|
198 |
|
199 |
+
# Save the file using the existing helper. We ignore the
|
200 |
+
# ``features`` return value because ``handle_resume_upload`` no
|
201 |
+
# longer parses resumes itself; it simply stores the file and
|
202 |
+
# returns the path on disk.
|
203 |
+
features, error, filepath = handle_resume_upload(file)
|
204 |
+
if error or not filepath:
|
205 |
+
return jsonify({"error": "Error processing resume. Please try again."}), 400
|
206 |
|
207 |
+
try:
|
208 |
+
# Parse the stored file. Pass both the path and the original
|
209 |
+
# filename so that the parser can fall back to the filename
|
210 |
+
# when inferring the candidate's name.
|
211 |
+
parsed = _parse_resume_helper(filepath, file.filename)
|
212 |
+
except Exception as exc:
|
213 |
+
# Log to stderr for debugging
|
214 |
+
print(f"Resume parsing error: {exc}", file=sys.stderr)
|
215 |
+
return jsonify({"error": "Failed to parse resume"}), 500
|
|
|
216 |
|
217 |
+
# Normalise the response to ensure string values for the form
|
218 |
response = {
|
219 |
+
'name': parsed.get('name', ''),
|
220 |
+
'skills': parsed.get('skills', ''),
|
221 |
+
'education': parsed.get('education', ''),
|
222 |
+
'experience': parsed.get('experience', '')
|
|
|
|
|
|
|
223 |
}
|
224 |
+
return jsonify(response), 200
|
225 |
|
226 |
@app.route("/interview/<int:job_id>")
|
227 |
@login_required
|
backend/services/resume_parser.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
resume_parser.py
|
3 |
+
=================
|
4 |
+
|
5 |
+
This module provides lightweight functions to extract useful information
|
6 |
+
from a candidate's resume. The design avoids heavy dependencies such
|
7 |
+
as spaCy or pdfminer because Hugging Face Spaces environments are
|
8 |
+
resource‑constrained and installing additional packages at runtime is
|
9 |
+
often not feasible. Instead, built‑in Python libraries and a
|
10 |
+
few simple heuristics are used to extract text from both PDF and DOCX
|
11 |
+
files and to infer the candidate's name, skills, education and
|
12 |
+
experience from that text.
|
13 |
+
|
14 |
+
The parser operates on the assumption that most resumes follow a
|
15 |
+
relatively consistent structure: the candidate's name appears near the
|
16 |
+
top of the document, headings such as "Education" and "Experience"
|
17 |
+
demarcate sections, and common skill keywords are scattered
|
18 |
+
throughout. These assumptions will not hold for every CV, but they
|
19 |
+
provide a reasonable baseline for auto‑filling form fields. Users can
|
20 |
+
always edit the populated fields before submitting their application.
|
21 |
+
|
22 |
+
Functions
|
23 |
+
---------
|
24 |
+
|
25 |
+
* ``extract_text(file_path: str) -> str``
|
26 |
+
Read a resume file (PDF or DOCX) and return its plain text. PDFs
|
27 |
+
are processed using the ``pdftotext`` command line tool, which is
|
28 |
+
available in the Hugging Face Spaces container. DOCX files are
|
29 |
+
treated as zip archives; the ``word/document.xml`` component is
|
30 |
+
parsed and stripped of XML tags.
|
31 |
+
|
32 |
+
* ``extract_name(text: str, filename: str) -> str``
|
33 |
+
Attempt to infer the candidate's full name from the document text.
|
34 |
+
If no plausible name is found in the first few lines of the text,
|
35 |
+
fall back to deriving a name from the file name itself.
|
36 |
+
|
37 |
+
* ``extract_skills(text: str) -> list[str]``
|
38 |
+
Search for a predefined list of common technical and soft skills
|
39 |
+
within the resume text. Matches are case‑insensitive and unique
|
40 |
+
values are returned in their original capitalisation.
|
41 |
+
|
42 |
+
* ``extract_education(text: str) -> list[str]``
|
43 |
+
Identify lines mentioning educational qualifications. Heuristics
|
44 |
+
include the presence of keywords like "University", "Bachelor",
|
45 |
+
"Master", "PhD", etc.
|
46 |
+
|
47 |
+
* ``extract_experience(text: str) -> list[str]``
|
48 |
+
Extract statements describing work experience. Lines containing
|
49 |
+
keywords such as "experience", "Developer", "Engineer" or those
|
50 |
+
matching patterns with years of service are considered.
|
51 |
+
|
52 |
+
* ``parse_resume(file_path: str, filename: str) -> dict``
|
53 |
+
High‑level wrapper that orchestrates the text extraction and
|
54 |
+
information extraction functions. Returns a dictionary with keys
|
55 |
+
``name``, ``skills``, ``education``, and ``experience``.
|
56 |
+
|
57 |
+
The main Flask route can import ``parse_resume`` from this module and
|
58 |
+
return its result as JSON. Because the heuristics are conservative and
|
59 |
+
string‑based, the parser runs quickly on both CPU and GPU hosts.
|
60 |
+
"""
|
61 |
+
|
62 |
+
from __future__ import annotations
|
63 |
+
|
64 |
+
import os
|
65 |
+
import re
|
66 |
+
import subprocess
|
67 |
+
import zipfile
|
68 |
+
from typing import List
|
69 |
+
|
70 |
+
|
71 |
+
def extract_text(file_path: str) -> str:
|
72 |
+
"""Extract raw text from a PDF or DOCX resume.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
file_path : str
|
77 |
+
Absolute path to the uploaded resume.
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
str
|
82 |
+
The textual content of the resume. If extraction fails,
|
83 |
+
returns an empty string.
|
84 |
+
"""
|
85 |
+
if not file_path or not os.path.isfile(file_path):
|
86 |
+
return ""
|
87 |
+
|
88 |
+
lower_name = file_path.lower()
|
89 |
+
try:
|
90 |
+
# If the file ends with .pdf use pdftotext. The '-layout'
|
91 |
+
# flag preserves relative positioning which helps preserve
|
92 |
+
# line breaks in the output. Output is sent to stdout.
|
93 |
+
if lower_name.endswith('.pdf'):
|
94 |
+
try:
|
95 |
+
result = subprocess.run(
|
96 |
+
['pdftotext', '-layout', file_path, '-'],
|
97 |
+
stdout=subprocess.PIPE,
|
98 |
+
stderr=subprocess.PIPE,
|
99 |
+
check=False
|
100 |
+
)
|
101 |
+
return result.stdout.decode('utf-8', errors='ignore')
|
102 |
+
except Exception:
|
103 |
+
return ""
|
104 |
+
# If it's a .docx treat it as a zip archive and pull the main
|
105 |
+
# document XML. Note that .doc files are not supported since
|
106 |
+
# they use a binary format.
|
107 |
+
elif lower_name.endswith('.docx'):
|
108 |
+
try:
|
109 |
+
with zipfile.ZipFile(file_path) as zf:
|
110 |
+
with zf.open('word/document.xml') as docx_xml:
|
111 |
+
xml_bytes = docx_xml.read()
|
112 |
+
# Remove XML tags to leave plain text. Replace
|
113 |
+
# tags with spaces to avoid accidental word
|
114 |
+
# concatenation.
|
115 |
+
xml_text = xml_bytes.decode('utf-8', errors='ignore')
|
116 |
+
# Replace common markup elements with newlines to
|
117 |
+
# preserve paragraph structure. Some tags like
|
118 |
+
# ``<w:p>`` represent paragraphs in Word.
|
119 |
+
xml_text = re.sub(r'<w:p[^>]*>', '\n', xml_text, flags=re.I)
|
120 |
+
# Remove remaining tags
|
121 |
+
text = re.sub(r'<[^>]+>', ' ', xml_text)
|
122 |
+
# Collapse multiple whitespace
|
123 |
+
text = re.sub(r'\s+', ' ', text)
|
124 |
+
return text
|
125 |
+
except Exception:
|
126 |
+
return ""
|
127 |
+
else:
|
128 |
+
# Unsupported file type
|
129 |
+
return ""
|
130 |
+
except Exception:
|
131 |
+
return ""
|
132 |
+
|
133 |
+
|
134 |
+
def extract_name(text: str, filename: str) -> str:
|
135 |
+
"""Attempt to extract the candidate's full name from the resume.
|
136 |
+
|
137 |
+
This function first inspects the first few lines of the resume
|
138 |
+
text. It looks for lines containing between two and four words
|
139 |
+
where each word starts with an uppercase letter. If such a line
|
140 |
+
isn't found, it falls back to deriving a name from the file name.
|
141 |
+
|
142 |
+
Parameters
|
143 |
+
----------
|
144 |
+
text : str
|
145 |
+
The full resume text.
|
146 |
+
filename : str
|
147 |
+
The original filename of the uploaded resume.
|
148 |
+
|
149 |
+
Returns
|
150 |
+
-------
|
151 |
+
str
|
152 |
+
Inferred full name or an empty string if not found.
|
153 |
+
"""
|
154 |
+
if text:
|
155 |
+
# Consider the first 10 lines for a potential name. Strip
|
156 |
+
# whitespace and ignore empty lines.
|
157 |
+
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
158 |
+
for line in lines[:10]:
|
159 |
+
# Remove common headings like "Resume" or "Curriculum Vitae"
|
160 |
+
if re.match(r'(?i)resume|curriculum vitae', line):
|
161 |
+
continue
|
162 |
+
words = line.split()
|
163 |
+
# A plausible name typically has 2–4 words
|
164 |
+
if 1 < len(words) <= 4:
|
165 |
+
# All words must start with an uppercase letter (allow
|
166 |
+
# accented characters) and contain at least one letter.
|
167 |
+
if all(re.match(r'^[A-ZÀ-ÖØ-Þ][\w\-]*', w) for w in words):
|
168 |
+
return line
|
169 |
+
# Fallback: derive a name from the filename
|
170 |
+
base = os.path.basename(filename)
|
171 |
+
# Remove extension
|
172 |
+
base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I)
|
173 |
+
# Replace underscores, dashes and dots with spaces
|
174 |
+
base = re.sub(r'[\._-]+', ' ', base)
|
175 |
+
# Remove common tokens like 'cv' or 'resume'
|
176 |
+
base = re.sub(r'(?i)\b(cv|resume)\b', '', base)
|
177 |
+
base = re.sub(r'\s+', ' ', base).strip()
|
178 |
+
# Title case the remaining string
|
179 |
+
return base.title() if base else ''
|
180 |
+
|
181 |
+
|
182 |
+
def extract_skills(text: str) -> List[str]:
|
183 |
+
"""Identify common skills mentioned in the resume.
|
184 |
+
|
185 |
+
A predefined set of skills is checked against the resume text in a
|
186 |
+
case‑insensitive manner. If a skill phrase appears anywhere in the
|
187 |
+
text, it is added to the result list. Multi‑word skills must match
|
188 |
+
the full phrase to count as a hit.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
text : str
|
193 |
+
The resume's full text.
|
194 |
+
|
195 |
+
Returns
|
196 |
+
-------
|
197 |
+
list[str]
|
198 |
+
Unique skills found in the resume, preserving their original
|
199 |
+
capitalisation where possible.
|
200 |
+
"""
|
201 |
+
if not text:
|
202 |
+
return []
|
203 |
+
lower_text = text.lower()
|
204 |
+
# Define a set of common technical and soft skills. This list can
|
205 |
+
# be extended in future iterations without modifying the parser
|
206 |
+
SKILLS = [
|
207 |
+
'python', 'java', 'c++', 'c', 'javascript', 'html', 'css',
|
208 |
+
'react', 'node', 'angular', 'vue', 'django', 'flask', 'spring',
|
209 |
+
'machine learning', 'deep learning', 'nlp', 'data analysis',
|
210 |
+
'data science', 'sql', 'mysql', 'postgresql', 'mongodb', 'git',
|
211 |
+
'docker', 'kubernetes', 'aws', 'azure', 'gcp', 'linux',
|
212 |
+
'tensorflow', 'pytorch', 'scikit-learn', 'pandas', 'numpy',
|
213 |
+
'matplotlib', 'excel', 'powerpoint', 'project management',
|
214 |
+
'communication', 'teamwork', 'leadership', 'problem solving',
|
215 |
+
'public speaking', 'writing', 'analysis', 'time management'
|
216 |
+
]
|
217 |
+
found = []
|
218 |
+
for skill in SKILLS:
|
219 |
+
pattern = re.escape(skill.lower())
|
220 |
+
if re.search(r'\b' + pattern + r'\b', lower_text):
|
221 |
+
# Preserve the original capitalisation of the skill phrase
|
222 |
+
found.append(skill.title() if skill.islower() else skill)
|
223 |
+
return list(dict.fromkeys(found)) # Remove duplicates, preserve order
|
224 |
+
|
225 |
+
|
226 |
+
def extract_education(text: str) -> List[str]:
|
227 |
+
"""Gather educational qualifications from the resume text.
|
228 |
+
|
229 |
+
The function searches for lines containing keywords related to
|
230 |
+
education. Only distinct lines with meaningful content are
|
231 |
+
included.
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
----------
|
235 |
+
text : str
|
236 |
+
|
237 |
+
Returns
|
238 |
+
-------
|
239 |
+
list[str]
|
240 |
+
Lines representing educational qualifications.
|
241 |
+
"""
|
242 |
+
if not text:
|
243 |
+
return []
|
244 |
+
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
245 |
+
education_keywords = [
|
246 |
+
'university', 'college', 'bachelor', 'master', 'phd', 'b.sc',
|
247 |
+
'm.sc', 'mba', 'school', 'degree', 'diploma', 'engineering'
|
248 |
+
]
|
249 |
+
results = []
|
250 |
+
for line in lines:
|
251 |
+
lower = line.lower()
|
252 |
+
if any(kw in lower for kw in education_keywords):
|
253 |
+
# Avoid capturing the same line twice
|
254 |
+
if line not in results:
|
255 |
+
results.append(line)
|
256 |
+
# If nothing found, return an empty list
|
257 |
+
return results
|
258 |
+
|
259 |
+
|
260 |
+
def extract_experience(text: str) -> List[str]:
|
261 |
+
"""Extract snippets of work experience from resume text.
|
262 |
+
|
263 |
+
Heuristics are used to detect sentences or lines that likely
|
264 |
+
describe professional experience. Indicators include the presence
|
265 |
+
of keywords like "experience", job titles, or explicit durations.
|
266 |
+
|
267 |
+
Parameters
|
268 |
+
----------
|
269 |
+
text : str
|
270 |
+
|
271 |
+
Returns
|
272 |
+
-------
|
273 |
+
list[str]
|
274 |
+
A list of lines summarising work experience.
|
275 |
+
"""
|
276 |
+
if not text:
|
277 |
+
return []
|
278 |
+
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
279 |
+
# Keywords signalling experience entries
|
280 |
+
exp_keywords = [
|
281 |
+
'experience', 'worked', 'employment', 'internship', 'developer',
|
282 |
+
'engineer', 'manager', 'analyst', 'consultant', 'assistant',
|
283 |
+
'years', 'year', 'months', 'month', 'present'
|
284 |
+
]
|
285 |
+
results = []
|
286 |
+
for line in lines:
|
287 |
+
lower = line.lower()
|
288 |
+
if any(kw in lower for kw in exp_keywords):
|
289 |
+
# Filter out lines that are just section headings
|
290 |
+
if len(lower.split()) > 2:
|
291 |
+
if line not in results:
|
292 |
+
results.append(line)
|
293 |
+
return results
|
294 |
+
|
295 |
+
|
296 |
+
def parse_resume(file_path: str, filename: str) -> dict:
|
297 |
+
"""High‑level helper to parse a resume into structured fields.
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
file_path : str
|
302 |
+
Location of the uploaded file on disk.
|
303 |
+
filename : str
|
304 |
+
The original filename as provided by the user. Used as a
|
305 |
+
fallback for name extraction if the document text does not
|
306 |
+
reveal a plausible name.
|
307 |
+
|
308 |
+
Returns
|
309 |
+
-------
|
310 |
+
dict
|
311 |
+
Dictionary with keys ``name``, ``skills``, ``education`` and
|
312 |
+
``experience``. Each value is a string, except for the name
|
313 |
+
which is a single string. Lists are joined into a comma or
|
314 |
+
newline separated string suitable for form fields.
|
315 |
+
"""
|
316 |
+
text = extract_text(file_path)
|
317 |
+
name = extract_name(text, filename)
|
318 |
+
skills_list = extract_skills(text)
|
319 |
+
education_list = extract_education(text)
|
320 |
+
experience_list = extract_experience(text)
|
321 |
+
return {
|
322 |
+
'name': name or '',
|
323 |
+
'skills': ', '.join(skills_list) if skills_list else '',
|
324 |
+
'education': '\n'.join(education_list) if education_list else '',
|
325 |
+
'experience': '\n'.join(experience_list) if experience_list else ''
|
326 |
+
}
|
backend/templates/apply.html
CHANGED
@@ -15,12 +15,12 @@
|
|
15 |
|
16 |
{% block content %}
|
17 |
<section class="content-section">
|
18 |
-
<ul class="breadcrumbs">
|
19 |
<li><a href="{{ url_for('index') }}">Home</a></li>
|
20 |
<li><a href="{{ url_for('jobs') }}">Jobs</a></li>
|
21 |
<li><a href="{{ url_for('job_detail', job_id=job.id) }}">{{ job.role }}</a></li>
|
22 |
<li>Apply</li>
|
23 |
-
</ul>
|
24 |
|
25 |
<div class="card">
|
26 |
<div class="card-header">
|
|
|
15 |
|
16 |
{% block content %}
|
17 |
<section class="content-section">
|
18 |
+
<!-- <ul class="breadcrumbs">
|
19 |
<li><a href="{{ url_for('index') }}">Home</a></li>
|
20 |
<li><a href="{{ url_for('jobs') }}">Jobs</a></li>
|
21 |
<li><a href="{{ url_for('job_detail', job_id=job.id) }}">{{ job.role }}</a></li>
|
22 |
<li>Apply</li>
|
23 |
+
</ul> -->
|
24 |
|
25 |
<div class="card">
|
26 |
<div class="card-header">
|