Spaces:
Paused
Paused
Commit
·
d4b2339
1
Parent(s):
50d928c
deepseek model loaded
Browse files- backend/services/resume_parser.py +108 -51
backend/services/resume_parser.py
CHANGED
@@ -3,49 +3,61 @@ import os
|
|
3 |
import re
|
4 |
import subprocess
|
5 |
import zipfile
|
|
|
|
|
6 |
from typing import List
|
7 |
-
from transformers import
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def extract_text(file_path: str) -> str:
|
13 |
-
"""Extract text from PDF or DOCX."""
|
14 |
if not file_path or not os.path.isfile(file_path):
|
15 |
return ""
|
16 |
|
17 |
lower_name = file_path.lower()
|
18 |
try:
|
19 |
if lower_name.endswith('.pdf'):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
except Exception:
|
29 |
-
return ""
|
30 |
elif lower_name.endswith('.docx'):
|
31 |
-
|
32 |
-
with
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
text = re.sub(r'\s+', ' ', text)
|
39 |
-
return text
|
40 |
-
except Exception:
|
41 |
-
return ""
|
42 |
else:
|
43 |
return ""
|
44 |
except Exception:
|
45 |
return ""
|
46 |
|
|
|
|
|
|
|
47 |
def extract_name(text: str, filename: str) -> str:
|
48 |
-
"""Extract candidate's name from text or filename."""
|
49 |
if text:
|
50 |
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
51 |
for line in lines[:10]:
|
@@ -59,36 +71,81 @@ def extract_name(text: str, filename: str) -> str:
|
|
59 |
base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I)
|
60 |
base = re.sub(r'[\._-]+', ' ', base)
|
61 |
base = re.sub(r'(?i)\b(cv|resume)\b', '', base)
|
62 |
-
base
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return {
|
79 |
-
"skills":
|
80 |
-
"education":
|
81 |
-
"experience":
|
82 |
}
|
83 |
|
|
|
|
|
|
|
84 |
def parse_resume(file_path: str, filename: str) -> dict:
|
85 |
-
"""Main
|
86 |
text = extract_text(file_path)
|
87 |
name = extract_name(text, filename)
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
return {
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
}
|
|
|
3 |
import re
|
4 |
import subprocess
|
5 |
import zipfile
|
6 |
+
import json
|
7 |
+
import torch
|
8 |
from typing import List
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
|
11 |
+
# ===============================
|
12 |
+
# Load DeepSeek Janus-Pro-7B Model
|
13 |
+
# ===============================
|
14 |
+
MODEL_ID = "deepseek-ai/Janus-Pro-7B"
|
15 |
|
16 |
+
print(f"Loading {MODEL_ID}... (This may take some time on first run)")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
MODEL_ID,
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
device_map="auto"
|
22 |
+
)
|
23 |
+
|
24 |
+
# ===============================
|
25 |
+
# Text Extraction (PDF/DOCX)
|
26 |
+
# ===============================
|
27 |
def extract_text(file_path: str) -> str:
|
28 |
+
"""Extract text from PDF or DOCX resumes."""
|
29 |
if not file_path or not os.path.isfile(file_path):
|
30 |
return ""
|
31 |
|
32 |
lower_name = file_path.lower()
|
33 |
try:
|
34 |
if lower_name.endswith('.pdf'):
|
35 |
+
result = subprocess.run(
|
36 |
+
['pdftotext', '-layout', file_path, '-'],
|
37 |
+
stdout=subprocess.PIPE,
|
38 |
+
stderr=subprocess.PIPE,
|
39 |
+
check=False
|
40 |
+
)
|
41 |
+
return result.stdout.decode('utf-8', errors='ignore')
|
42 |
+
|
|
|
|
|
43 |
elif lower_name.endswith('.docx'):
|
44 |
+
with zipfile.ZipFile(file_path) as zf:
|
45 |
+
with zf.open('word/document.xml') as docx_xml:
|
46 |
+
xml_bytes = docx_xml.read()
|
47 |
+
xml_text = xml_bytes.decode('utf-8', errors='ignore')
|
48 |
+
xml_text = re.sub(r'<w:p[^>]*>', '\n', xml_text, flags=re.I)
|
49 |
+
text = re.sub(r'<[^>]+>', ' ', xml_text)
|
50 |
+
return re.sub(r'\s+', ' ', text)
|
|
|
|
|
|
|
|
|
51 |
else:
|
52 |
return ""
|
53 |
except Exception:
|
54 |
return ""
|
55 |
|
56 |
+
# ===============================
|
57 |
+
# Name Extraction (Fallback)
|
58 |
+
# ===============================
|
59 |
def extract_name(text: str, filename: str) -> str:
|
60 |
+
"""Extract candidate's name from resume text or filename."""
|
61 |
if text:
|
62 |
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
63 |
for line in lines[:10]:
|
|
|
71 |
base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I)
|
72 |
base = re.sub(r'[\._-]+', ' ', base)
|
73 |
base = re.sub(r'(?i)\b(cv|resume)\b', '', base)
|
74 |
+
return base.title().strip()
|
75 |
+
|
76 |
+
# ===============================
|
77 |
+
# Janus-Pro Parsing
|
78 |
+
# ===============================
|
79 |
+
def parse_with_deepseek(text: str) -> dict:
|
80 |
+
"""Use DeepSeek Janus-Pro-7B to extract resume details in JSON format."""
|
81 |
+
prompt = f"""
|
82 |
+
Extract the following information from the resume text below:
|
83 |
+
|
84 |
+
- Full Name
|
85 |
+
- Skills (comma separated)
|
86 |
+
- Education (degrees + institutions)
|
87 |
+
- Experience (job titles + companies)
|
88 |
+
|
89 |
+
Return only valid JSON in the following structure:
|
90 |
+
{{
|
91 |
+
"name": "Full Name",
|
92 |
+
"skills": "Skill1, Skill2, Skill3",
|
93 |
+
"education": "Degree1 - Institution1; Degree2 - Institution2",
|
94 |
+
"experience": "Job1 - Company1; Job2 - Company2"
|
95 |
+
}}
|
96 |
+
|
97 |
+
Resume:
|
98 |
+
{text}
|
99 |
+
"""
|
100 |
+
|
101 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
102 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
103 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
104 |
+
|
105 |
+
# Extract JSON safely
|
106 |
+
match = re.search(r"\{.*\}", response, re.S)
|
107 |
+
if match:
|
108 |
+
try:
|
109 |
+
return json.loads(match.group())
|
110 |
+
except:
|
111 |
+
pass
|
112 |
+
return {"name": "", "skills": "", "education": "", "experience": ""}
|
113 |
+
|
114 |
+
# ===============================
|
115 |
+
# Fallback Heading-based Parsing
|
116 |
+
# ===============================
|
117 |
+
def fallback_parse(text: str) -> dict:
|
118 |
+
"""Simple heading-based parsing as backup."""
|
119 |
+
skills = re.findall(r"Skills\s*[:\-]?\s*(.*)", text, re.I)
|
120 |
+
education = re.findall(r"Education\s*[:\-]?\s*(.*)", text, re.I)
|
121 |
+
experience = re.findall(r"(Experience|Work History)\s*[:\-]?\s*(.*)", text, re.I)
|
122 |
return {
|
123 |
+
"skills": ", ".join(skills),
|
124 |
+
"education": ", ".join(education),
|
125 |
+
"experience": ", ".join([exp[1] for exp in experience])
|
126 |
}
|
127 |
|
128 |
+
# ===============================
|
129 |
+
# Main Parse Function
|
130 |
+
# ===============================
|
131 |
def parse_resume(file_path: str, filename: str) -> dict:
|
132 |
+
"""Main resume parsing function."""
|
133 |
text = extract_text(file_path)
|
134 |
name = extract_name(text, filename)
|
135 |
+
|
136 |
+
# Try Janus-Pro parsing
|
137 |
+
ents = parse_with_deepseek(text)
|
138 |
+
|
139 |
+
# If Janus-Pro misses fields, use fallback
|
140 |
+
if not ents.get("skills") or not ents.get("education"):
|
141 |
+
fb = fallback_parse(text)
|
142 |
+
ents["skills"] = ents.get("skills") or fb["skills"]
|
143 |
+
ents["education"] = ents.get("education") or fb["education"]
|
144 |
+
ents["experience"] = ents.get("experience") or fb["experience"]
|
145 |
+
|
146 |
return {
|
147 |
+
"name": ents.get("name") or name,
|
148 |
+
"skills": ents.get("skills", ""),
|
149 |
+
"education": ents.get("education", ""),
|
150 |
+
"experience": ents.get("experience", "")
|
151 |
}
|