Spaces:
Paused
Paused
Commit
·
efffc2e
1
Parent(s):
f3f24e3
updated
Browse files
backend/services/resume_parser.py
CHANGED
@@ -3,100 +3,102 @@ import os
|
|
3 |
import re
|
4 |
import subprocess
|
5 |
import zipfile
|
6 |
-
from typing import List
|
7 |
-
|
|
|
8 |
|
9 |
# ===============================
|
10 |
-
# Load
|
11 |
# ===============================
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# ===============================
|
15 |
-
#
|
16 |
# ===============================
|
17 |
def extract_text(file_path: str) -> str:
|
18 |
-
"""Extract text from PDF or DOCX
|
19 |
if not file_path or not os.path.isfile(file_path):
|
20 |
return ""
|
21 |
|
22 |
lower_name = file_path.lower()
|
23 |
try:
|
24 |
-
if lower_name.endswith(
|
25 |
result = subprocess.run(
|
26 |
-
[
|
27 |
stdout=subprocess.PIPE,
|
28 |
stderr=subprocess.PIPE,
|
29 |
check=False
|
30 |
)
|
31 |
-
return result.stdout.decode(
|
32 |
|
33 |
-
elif lower_name.endswith(
|
34 |
with zipfile.ZipFile(file_path) as zf:
|
35 |
-
with zf.open(
|
36 |
xml_bytes = docx_xml.read()
|
37 |
-
xml_text = xml_bytes.decode(
|
38 |
-
xml_text = re.sub(r
|
39 |
-
text = re.sub(r
|
40 |
-
return re.sub(r
|
41 |
else:
|
42 |
return ""
|
43 |
except Exception:
|
44 |
return ""
|
45 |
|
46 |
# ===============================
|
47 |
-
#
|
48 |
# ===============================
|
49 |
-
def
|
50 |
-
"""
|
51 |
-
|
52 |
-
lines = [ln.strip() for ln in text.splitlines() if ln.strip()]
|
53 |
-
for line in lines[:10]:
|
54 |
-
if re.match(r'(?i)resume|curriculum vitae', line):
|
55 |
-
continue
|
56 |
-
words = line.split()
|
57 |
-
if 1 < len(words) <= 4:
|
58 |
-
if all(re.match(r'^[A-ZÀ-ÖØ-Þ][\w\-]*', w) for w in words):
|
59 |
-
return line
|
60 |
-
base = os.path.basename(filename)
|
61 |
-
base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I)
|
62 |
-
base = re.sub(r'[\._-]+', ' ', base)
|
63 |
-
base = re.sub(r'(?i)\b(cv|resume)\b', '', base)
|
64 |
-
return base.title().strip()
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
# ===============================
|
86 |
# Main Parse Function
|
87 |
# ===============================
|
88 |
def parse_resume(file_path: str, filename: str) -> dict:
|
89 |
-
"""Main function
|
90 |
text = extract_text(file_path)
|
91 |
-
|
92 |
-
|
93 |
-
ents = parse_with_kiet_model(text)
|
94 |
-
if not ents.get("name"):
|
95 |
-
ents["name"] = name
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
3 |
import re
|
4 |
import subprocess
|
5 |
import zipfile
|
6 |
+
from typing import List, Dict
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
9 |
|
10 |
# ===============================
|
11 |
+
# Load Model & Tokenizer
|
12 |
# ===============================
|
13 |
+
MODEL_ID = "sravya-abburi/ResumeParserBERT"
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
16 |
+
model = AutoModelForTokenClassification.from_pretrained(MODEL_ID)
|
17 |
+
|
18 |
+
ner_pipeline = pipeline(
|
19 |
+
"ner",
|
20 |
+
model=model,
|
21 |
+
tokenizer=tokenizer,
|
22 |
+
aggregation_strategy="simple",
|
23 |
+
device=0 if torch.cuda.is_available() else -1
|
24 |
+
)
|
25 |
|
26 |
# ===============================
|
27 |
+
# Text Extraction
|
28 |
# ===============================
|
29 |
def extract_text(file_path: str) -> str:
|
30 |
+
"""Extract raw text from PDF or DOCX."""
|
31 |
if not file_path or not os.path.isfile(file_path):
|
32 |
return ""
|
33 |
|
34 |
lower_name = file_path.lower()
|
35 |
try:
|
36 |
+
if lower_name.endswith(".pdf"):
|
37 |
result = subprocess.run(
|
38 |
+
["pdftotext", "-layout", file_path, "-"],
|
39 |
stdout=subprocess.PIPE,
|
40 |
stderr=subprocess.PIPE,
|
41 |
check=False
|
42 |
)
|
43 |
+
return result.stdout.decode("utf-8", errors="ignore")
|
44 |
|
45 |
+
elif lower_name.endswith(".docx"):
|
46 |
with zipfile.ZipFile(file_path) as zf:
|
47 |
+
with zf.open("word/document.xml") as docx_xml:
|
48 |
xml_bytes = docx_xml.read()
|
49 |
+
xml_text = xml_bytes.decode("utf-8", errors="ignore")
|
50 |
+
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
|
51 |
+
text = re.sub(r"<[^>]+>", " ", xml_text)
|
52 |
+
return re.sub(r"\s+", " ", text)
|
53 |
else:
|
54 |
return ""
|
55 |
except Exception:
|
56 |
return ""
|
57 |
|
58 |
# ===============================
|
59 |
+
# Parse Resume using BERT NER
|
60 |
# ===============================
|
61 |
+
def parse_with_bert(text: str) -> Dict[str, str]:
|
62 |
+
"""Parse resume text into structured fields using BERT NER."""
|
63 |
+
entities = ner_pipeline(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
name_tokens, skill_tokens, edu_tokens, exp_tokens = [], [], [], []
|
66 |
+
|
67 |
+
for ent in entities:
|
68 |
+
label = ent["entity_group"].upper()
|
69 |
+
word = ent["word"].strip()
|
70 |
+
|
71 |
+
if label == "NAME" and word not in name_tokens:
|
72 |
+
name_tokens.append(word)
|
73 |
+
elif label == "SKILL" and word not in skill_tokens:
|
74 |
+
skill_tokens.append(word)
|
75 |
+
elif label == "EDUCATION" and word not in edu_tokens:
|
76 |
+
edu_tokens.append(word)
|
77 |
+
elif label == "EXPERIENCE" and word not in exp_tokens:
|
78 |
+
exp_tokens.append(word)
|
79 |
+
|
80 |
+
return {
|
81 |
+
"name": " ".join(name_tokens),
|
82 |
+
"skills": ", ".join(skill_tokens),
|
83 |
+
"education": ", ".join(edu_tokens),
|
84 |
+
"experience": ", ".join(exp_tokens)
|
85 |
+
}
|
86 |
|
87 |
# ===============================
|
88 |
# Main Parse Function
|
89 |
# ===============================
|
90 |
def parse_resume(file_path: str, filename: str) -> dict:
|
91 |
+
"""Main function for resume parsing."""
|
92 |
text = extract_text(file_path)
|
93 |
+
if not text:
|
94 |
+
return {"name": "", "skills": "", "education": "", "experience": ""}
|
|
|
|
|
|
|
95 |
|
96 |
+
ents = parse_with_bert(text)
|
97 |
+
|
98 |
+
# Fallback: use filename for name if model doesn't find one
|
99 |
+
if not ents["name"]:
|
100 |
+
base = os.path.basename(filename)
|
101 |
+
base = re.sub(r"\.(pdf|docx|doc)$", "", base, flags=re.I)
|
102 |
+
ents["name"] = re.sub(r"[\._-]+", " ", base).title().strip()
|
103 |
+
|
104 |
+
return ents
|