Spaces:
Paused
Paused
Commit
·
f2a1cfa
1
Parent(s):
6248af7
updated
Browse files- backend/services/resume_parser.py +144 -103
backend/services/resume_parser.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import json
|
2 |
import re
|
|
|
3 |
from pathlib import Path
|
4 |
-
from typing import Dict, List, Optional
|
5 |
from pdfminer.high_level import extract_text as pdf_extract_text
|
6 |
from docx import Document
|
7 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
@@ -30,7 +31,8 @@ class ResumeParser:
|
|
30 |
"ner",
|
31 |
model=model,
|
32 |
tokenizer=tokenizer,
|
33 |
-
aggregation_strategy="simple"
|
|
|
34 |
)
|
35 |
self.model_loaded = True
|
36 |
logger.info("Model loaded successfully")
|
@@ -45,7 +47,8 @@ class ResumeParser:
|
|
45 |
self.ner_pipeline = pipeline(
|
46 |
"ner",
|
47 |
model=MODEL_NAME,
|
48 |
-
aggregation_strategy="simple"
|
|
|
49 |
)
|
50 |
self.model_loaded = True
|
51 |
logger.info("Fallback model loaded successfully")
|
@@ -64,6 +67,8 @@ class ResumeParser:
|
|
64 |
|
65 |
if path.suffix.lower() == ".pdf":
|
66 |
text = pdf_extract_text(file_path)
|
|
|
|
|
67 |
logger.info(f"Extracted {len(text)} characters from PDF")
|
68 |
return text
|
69 |
|
@@ -81,37 +86,61 @@ class ResumeParser:
|
|
81 |
raise
|
82 |
|
83 |
def extract_with_regex(self, text: str) -> Dict[str, List[str]]:
|
84 |
-
"""
|
85 |
patterns = {
|
86 |
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
|
87 |
-
'phone': r'(
|
88 |
-
'skills': r'(?i)(?:skills?|technologies?|tools
|
89 |
-
'education': r'(?i)(?:education|degree|university|college|bachelor|master|phd)[:\-\s]*(
|
90 |
-
'experience': r'(?i)(?:experience|work|employment|job)[:\-\s]*(
|
|
|
91 |
}
|
92 |
|
93 |
results = {}
|
94 |
for key, pattern in patterns.items():
|
95 |
-
matches = re.findall(pattern, text, re.MULTILINE)
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
return results
|
99 |
|
100 |
def extract_name_from_text(self, text: str) -> str:
|
101 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
lines = text.split('\n')
|
103 |
-
|
104 |
-
for line in lines[:5]:
|
105 |
line = line.strip()
|
106 |
-
if line and len(line.split()) <= 4
|
107 |
# Check if it looks like a name (not email, phone, etc.)
|
108 |
-
if not re.search(r'[@\d]', line)
|
109 |
-
|
|
|
110 |
return "Not Found"
|
111 |
|
112 |
def process_ner_entities(self, entities: List[Dict]) -> Dict[str, List[str]]:
|
113 |
"""Process NER entities with improved logic"""
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
logger.info(f"Processing {len(entities)} entities")
|
117 |
|
@@ -120,27 +149,77 @@ class ResumeParser:
|
|
120 |
value = ent.get("word", "").strip()
|
121 |
confidence = ent.get("score", 0)
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
# Only consider high-confidence entities
|
126 |
-
if confidence < 0.5:
|
127 |
continue
|
128 |
|
|
|
129 |
if label in ["PERSON", "PER", "NAME"]:
|
130 |
-
name.append(value)
|
131 |
elif label in ["SKILL", "TECH", "TECHNOLOGY"]:
|
132 |
-
skills.append(value)
|
133 |
-
elif label in ["EDUCATION", "DEGREE", "EDU", "ORG"]:
|
134 |
-
education.append(value)
|
135 |
elif label in ["EXPERIENCE", "JOB", "ROLE", "POSITION", "WORK"]:
|
136 |
-
experience.append(value)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
def parse_resume(self, file_path: str, filename: str = None) -> Dict[str, str]:
|
146 |
"""Parse resume with multiple extraction methods"""
|
@@ -154,59 +233,53 @@ class ResumeParser:
|
|
154 |
logger.info(f"Text preview: {text[:200]}...")
|
155 |
|
156 |
# Initialize results
|
157 |
-
|
158 |
-
"name":
|
159 |
-
"skills":
|
160 |
-
"education":
|
161 |
-
"experience":
|
162 |
}
|
163 |
|
164 |
# Method 1: Try NER model if available
|
165 |
if self.model_loaded and self.ner_pipeline:
|
166 |
try:
|
167 |
logger.info("Using NER model for extraction")
|
168 |
-
entities = self.ner_pipeline(text)
|
169 |
ner_results = self.process_ner_entities(entities)
|
170 |
-
|
171 |
-
# Update results with NER findings
|
172 |
-
for key in results.keys():
|
173 |
-
if ner_results.get(key):
|
174 |
-
unique_items = list(dict.fromkeys(ner_results[key]))
|
175 |
-
results[key] = ", ".join(unique_items)
|
176 |
-
|
177 |
except Exception as e:
|
178 |
logger.warning(f"NER extraction failed: {e}")
|
179 |
|
180 |
-
# Method 2: Regex
|
181 |
logger.info("Using regex patterns for extraction")
|
182 |
regex_results = self.extract_with_regex(text)
|
|
|
183 |
|
184 |
-
#
|
185 |
-
if
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
results["skills"] = ", ".join(regex_results["skills"][:3]) # Limit to first 3
|
190 |
|
191 |
-
|
192 |
-
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
if regex_results.get("phone"):
|
201 |
-
results["phone"] = regex_results["phone"][0]
|
202 |
|
203 |
logger.info("Parsing completed successfully")
|
204 |
-
return
|
205 |
|
206 |
except Exception as e:
|
207 |
logger.error(f"Error parsing resume: {e}")
|
208 |
return {
|
209 |
"name": "Error",
|
|
|
|
|
210 |
"skills": "Error",
|
211 |
"education": "Error",
|
212 |
"experience": "Error",
|
@@ -220,44 +293,12 @@ def parse_resume(file_path: str, filename: str = None) -> Dict[str, str]:
|
|
220 |
"""Main function to parse resume"""
|
221 |
return resume_parser.parse_resume(file_path, filename)
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
"
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
Skills: Python, JavaScript, React, Node.js, SQL
|
233 |
-
|
234 |
-
Education:
|
235 |
-
Bachelor of Science in Computer Science
|
236 |
-
University of Technology, 2020
|
237 |
-
|
238 |
-
Experience:
|
239 |
-
Senior Software Developer at Tech Corp (2021-2023)
|
240 |
-
- Developed web applications using React and Node.js
|
241 |
-
- Managed database systems and APIs
|
242 |
-
"""
|
243 |
-
|
244 |
-
# Create a temporary file for testing
|
245 |
-
import tempfile
|
246 |
-
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
|
247 |
-
f.write(sample_text)
|
248 |
-
temp_path = f.name
|
249 |
-
|
250 |
-
try:
|
251 |
-
# Test regex extraction
|
252 |
-
regex_results = resume_parser.extract_with_regex(sample_text)
|
253 |
-
print("Regex Results:", json.dumps(regex_results, indent=2))
|
254 |
-
|
255 |
-
# Test name extraction
|
256 |
-
name = resume_parser.extract_name_from_text(sample_text)
|
257 |
-
print(f"Extracted Name: {name}")
|
258 |
-
|
259 |
-
except Exception as e:
|
260 |
-
print(f"Test error: {e}")
|
261 |
-
finally:
|
262 |
-
Path(temp_path).unlink(missing_ok=True)
|
263 |
-
|
|
|
1 |
import json
|
2 |
import re
|
3 |
+
import os
|
4 |
from pathlib import Path
|
5 |
+
from typing import Dict, List, Optional, Union
|
6 |
from pdfminer.high_level import extract_text as pdf_extract_text
|
7 |
from docx import Document
|
8 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
31 |
"ner",
|
32 |
model=model,
|
33 |
tokenizer=tokenizer,
|
34 |
+
aggregation_strategy="simple",
|
35 |
+
device=0 if os.environ.get("L4_GPU", "false").lower() == "true" else -1
|
36 |
)
|
37 |
self.model_loaded = True
|
38 |
logger.info("Model loaded successfully")
|
|
|
47 |
self.ner_pipeline = pipeline(
|
48 |
"ner",
|
49 |
model=MODEL_NAME,
|
50 |
+
aggregation_strategy="simple",
|
51 |
+
device=0 if os.environ.get("L4_GPU", "false").lower() == "true" else -1
|
52 |
)
|
53 |
self.model_loaded = True
|
54 |
logger.info("Fallback model loaded successfully")
|
|
|
67 |
|
68 |
if path.suffix.lower() == ".pdf":
|
69 |
text = pdf_extract_text(file_path)
|
70 |
+
# Clean up PDF text extraction artifacts
|
71 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
72 |
logger.info(f"Extracted {len(text)} characters from PDF")
|
73 |
return text
|
74 |
|
|
|
86 |
raise
|
87 |
|
88 |
def extract_with_regex(self, text: str) -> Dict[str, List[str]]:
|
89 |
+
"""Improved regex patterns for extraction"""
|
90 |
patterns = {
|
91 |
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
|
92 |
+
'phone': r'(?:\+?\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}',
|
93 |
+
'skills': r'(?i)(?:skills?|technologies?|tools?|expertise)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
94 |
+
'education': r'(?i)(?:education|degree|university|college|bachelor|master|phd)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
95 |
+
'experience': r'(?i)(?:experience|work\shistory|employment|job\shistory)[:\-\s]*(.*?)(?:\n\n|\n\s*\n|$)',
|
96 |
+
'name': r'^(?!(resume|cv|curriculum vitae|\d))[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+'
|
97 |
}
|
98 |
|
99 |
results = {}
|
100 |
for key, pattern in patterns.items():
|
101 |
+
matches = re.findall(pattern, text, re.MULTILINE | re.IGNORECASE)
|
102 |
+
if key == 'name' and matches:
|
103 |
+
# Take the first likely name match
|
104 |
+
results[key] = [matches[0].strip()]
|
105 |
+
else:
|
106 |
+
# Clean and filter matches
|
107 |
+
cleaned = [m.strip() for m in matches if m.strip()]
|
108 |
+
if cleaned:
|
109 |
+
results[key] = cleaned
|
110 |
|
111 |
return results
|
112 |
|
113 |
def extract_name_from_text(self, text: str) -> str:
|
114 |
+
"""Improved name extraction heuristics"""
|
115 |
+
# First try to find name using regex
|
116 |
+
name_match = re.search(
|
117 |
+
r'^(?!(resume|cv|curriculum vitae|\d))[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+',
|
118 |
+
text,
|
119 |
+
re.MULTILINE | re.IGNORECASE
|
120 |
+
)
|
121 |
+
|
122 |
+
if name_match:
|
123 |
+
return name_match.group(0).strip()
|
124 |
+
|
125 |
+
# Fallback to line-based approach
|
126 |
lines = text.split('\n')
|
127 |
+
for line in lines[:10]: # Check first 10 lines
|
|
|
128 |
line = line.strip()
|
129 |
+
if line and 2 <= len(line.split()) <= 4:
|
130 |
# Check if it looks like a name (not email, phone, etc.)
|
131 |
+
if not re.search(r'[@\d+\-\(\)]', line):
|
132 |
+
if line[0].isupper() and not line.lower().startswith(('resume', 'cv', 'curriculum')):
|
133 |
+
return line
|
134 |
return "Not Found"
|
135 |
|
136 |
def process_ner_entities(self, entities: List[Dict]) -> Dict[str, List[str]]:
|
137 |
"""Process NER entities with improved logic"""
|
138 |
+
results = {
|
139 |
+
"name": [],
|
140 |
+
"skills": [],
|
141 |
+
"education": [],
|
142 |
+
"experience": []
|
143 |
+
}
|
144 |
|
145 |
logger.info(f"Processing {len(entities)} entities")
|
146 |
|
|
|
149 |
value = ent.get("word", "").strip()
|
150 |
confidence = ent.get("score", 0)
|
151 |
|
152 |
+
# Skip low confidence entities and empty values
|
153 |
+
if confidence < 0.7 or not value:
|
|
|
|
|
154 |
continue
|
155 |
|
156 |
+
# Normalize labels
|
157 |
if label in ["PERSON", "PER", "NAME"]:
|
158 |
+
results["name"].append(value)
|
159 |
elif label in ["SKILL", "TECH", "TECHNOLOGY"]:
|
160 |
+
results["skills"].append(value)
|
161 |
+
elif label in ["EDUCATION", "DEGREE", "EDU", "ORG"] and "university" not in value.lower():
|
162 |
+
results["education"].append(value)
|
163 |
elif label in ["EXPERIENCE", "JOB", "ROLE", "POSITION", "WORK"]:
|
164 |
+
results["experience"].append(value)
|
165 |
|
166 |
+
# Deduplicate and clean results
|
167 |
+
for key in results:
|
168 |
+
results[key] = list(dict.fromkeys(results[key])) # Preserve order
|
169 |
+
|
170 |
+
return results
|
171 |
+
|
172 |
+
def merge_results(self, ner_results: Dict, regex_results: Dict) -> Dict[str, str]:
|
173 |
+
"""Merge NER and regex results intelligently"""
|
174 |
+
merged = {
|
175 |
+
"name": "Not Found",
|
176 |
+
"email": "Not Found",
|
177 |
+
"phone": "Not Found",
|
178 |
+
"skills": "Not Found",
|
179 |
+
"education": "Not Found",
|
180 |
+
"experience": "Not Found"
|
181 |
}
|
182 |
+
|
183 |
+
# Name - prioritize NER, then regex, then text extraction
|
184 |
+
if ner_results.get("name"):
|
185 |
+
merged["name"] = " ".join(ner_results["name"][:1]) # Take first name only
|
186 |
+
elif regex_results.get("name"):
|
187 |
+
merged["name"] = regex_results["name"][0]
|
188 |
+
|
189 |
+
# Email and phone - only from regex
|
190 |
+
if regex_results.get("email"):
|
191 |
+
merged["email"] = regex_results["email"][0]
|
192 |
+
if regex_results.get("phone"):
|
193 |
+
merged["phone"] = regex_results["phone"][0]
|
194 |
+
|
195 |
+
# Skills - combine both sources
|
196 |
+
all_skills = []
|
197 |
+
if ner_results.get("skills"):
|
198 |
+
all_skills.extend(ner_results["skills"])
|
199 |
+
if regex_results.get("skills"):
|
200 |
+
all_skills.extend(regex_results["skills"])
|
201 |
+
if all_skills:
|
202 |
+
merged["skills"] = ", ".join(list(dict.fromkeys(all_skills))[:10]) # Limit to 10 skills
|
203 |
+
|
204 |
+
# Education - combine both sources
|
205 |
+
all_edu = []
|
206 |
+
if ner_results.get("education"):
|
207 |
+
all_edu.extend(ner_results["education"])
|
208 |
+
if regex_results.get("education"):
|
209 |
+
all_edu.extend(regex_results["education"])
|
210 |
+
if all_edu:
|
211 |
+
merged["education"] = ", ".join(list(dict.fromkeys(all_edu))[:3] # Limit to 3 items
|
212 |
+
|
213 |
+
# Experience - combine both sources
|
214 |
+
all_exp = []
|
215 |
+
if ner_results.get("experience"):
|
216 |
+
all_exp.extend(ner_results["experience"])
|
217 |
+
if regex_results.get("experience"):
|
218 |
+
all_exp.extend(regex_results["experience"])
|
219 |
+
if all_exp:
|
220 |
+
merged["experience"] = ", ".join(list(dict.fromkeys(all_exp))[:3] # Limit to 3 items
|
221 |
+
|
222 |
+
return merged
|
223 |
|
224 |
def parse_resume(self, file_path: str, filename: str = None) -> Dict[str, str]:
|
225 |
"""Parse resume with multiple extraction methods"""
|
|
|
233 |
logger.info(f"Text preview: {text[:200]}...")
|
234 |
|
235 |
# Initialize results
|
236 |
+
ner_results = {
|
237 |
+
"name": [],
|
238 |
+
"skills": [],
|
239 |
+
"education": [],
|
240 |
+
"experience": []
|
241 |
}
|
242 |
|
243 |
# Method 1: Try NER model if available
|
244 |
if self.model_loaded and self.ner_pipeline:
|
245 |
try:
|
246 |
logger.info("Using NER model for extraction")
|
247 |
+
entities = self.ner_pipeline(text[:5120]) # Limit input size for NER
|
248 |
ner_results = self.process_ner_entities(entities)
|
249 |
+
logger.info(f"NER results: {json.dumps(ner_results, indent=2)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
except Exception as e:
|
251 |
logger.warning(f"NER extraction failed: {e}")
|
252 |
|
253 |
+
# Method 2: Regex extraction
|
254 |
logger.info("Using regex patterns for extraction")
|
255 |
regex_results = self.extract_with_regex(text)
|
256 |
+
logger.info(f"Regex results: {json.dumps(regex_results, indent=2)}")
|
257 |
|
258 |
+
# Method 3: Name extraction fallback
|
259 |
+
if not ner_results.get("name") and not regex_results.get("name"):
|
260 |
+
name = self.extract_name_from_text(text)
|
261 |
+
if name != "Not Found":
|
262 |
+
regex_results["name"] = [name]
|
|
|
263 |
|
264 |
+
# Merge all results
|
265 |
+
final_results = self.merge_results(ner_results, regex_results)
|
266 |
|
267 |
+
# If name still not found, try filename
|
268 |
+
if final_results["name"] == "Not Found" and filename:
|
269 |
+
# Try to extract name from filename (common pattern: "Firstname Lastname - Resume.pdf")
|
270 |
+
name_from_file = re.sub(r'[-_].*', '', filename).strip()
|
271 |
+
if len(name_from_file.split()) >= 2:
|
272 |
+
final_results["name"] = name_from_file
|
|
|
|
|
273 |
|
274 |
logger.info("Parsing completed successfully")
|
275 |
+
return final_results
|
276 |
|
277 |
except Exception as e:
|
278 |
logger.error(f"Error parsing resume: {e}")
|
279 |
return {
|
280 |
"name": "Error",
|
281 |
+
"email": "Error",
|
282 |
+
"phone": "Error",
|
283 |
"skills": "Error",
|
284 |
"education": "Error",
|
285 |
"experience": "Error",
|
|
|
293 |
"""Main function to parse resume"""
|
294 |
return resume_parser.parse_resume(file_path, filename)
|
295 |
|
296 |
+
if __name__ == "__main__":
|
297 |
+
# Test the parser
|
298 |
+
test_file = input("Enter path to resume file: ")
|
299 |
+
if os.path.exists(test_file):
|
300 |
+
results = parse_resume(test_file, os.path.basename(test_file))
|
301 |
+
print("\nParsing Results:")
|
302 |
+
print(json.dumps(results, indent=2))
|
303 |
+
else:
|
304 |
+
print("File not found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|