Spaces:
Paused
Paused
Commit
·
fb236cf
1
Parent(s):
7502aed
chatbot updated
Browse files- Dockerfile +2 -0
- app.py +30 -29
- backend/services/codingo_chatbot.py +319 -0
- requirements.txt +5 -2
Dockerfile
CHANGED
@@ -5,6 +5,8 @@ FROM nvidia/cuda:12.3.2-cudnn9-runtime-ubuntu22.04
|
|
5 |
ENV DEBIAN_FRONTEND=noninteractive
|
6 |
RUN apt-get update && apt-get install -y \
|
7 |
python3 python3-pip ffmpeg git libsndfile1 \
|
|
|
|
|
8 |
&& rm -rf /var/lib/apt/lists/*
|
9 |
|
10 |
# Set up Python environment
|
|
|
5 |
ENV DEBIAN_FRONTEND=noninteractive
|
6 |
RUN apt-get update && apt-get install -y \
|
7 |
python3 python3-pip ffmpeg git libsndfile1 \
|
8 |
+
# Development tools required to compile native extensions such as llama-cpp-python
|
9 |
+
build-essential cmake libopenblas-dev \
|
10 |
&& rm -rf /var/lib/apt/lists/*
|
11 |
|
12 |
# Set up Python environment
|
app.py
CHANGED
@@ -32,27 +32,34 @@ import re
|
|
32 |
import json
|
33 |
|
34 |
# -----------------------------------------------------------------------------
|
35 |
-
# Chatbot
|
36 |
#
|
37 |
-
#
|
38 |
-
# ``
|
39 |
-
#
|
40 |
-
#
|
41 |
-
#
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Initialize Flask app
|
58 |
app = Flask(
|
@@ -348,17 +355,11 @@ if __name__ == '__main__':
|
|
348 |
|
349 |
with app.app_context():
|
350 |
db.create_all()
|
351 |
-
# Pre-initialize
|
352 |
-
# deliberately trigger a dummy query here to force loading of the
|
353 |
-
# sentence encoder, vector store and conversational model. Any
|
354 |
-
# exceptions during warm‑up are logged but do not stop the app from
|
355 |
-
# starting.
|
356 |
print("Initializing chatbot...")
|
357 |
try:
|
358 |
-
|
359 |
-
|
360 |
-
from chatbot.chatbot import get_chatbot_response
|
361 |
-
_ = get_chatbot_response("Hello!")
|
362 |
print("Chatbot initialized successfully")
|
363 |
except Exception as e:
|
364 |
print(f"Chatbot initialization warning: {e}")
|
|
|
32 |
import json
|
33 |
|
34 |
# -----------------------------------------------------------------------------
|
35 |
+
# Chatbot integration
|
36 |
#
|
37 |
+
# We delegate all chatbot logic to the ``codingo_chatbot`` module within
|
38 |
+
# ``backend/services``. This module handles loading the knowledge base,
|
39 |
+
# building embeddings, initialising the TinyLlama model and generating
|
40 |
+
# responses. Importing here ensures the heavy dependencies are loaded only
|
41 |
+
# when the chatbot endpoint is used. See ``backend/services/codingo_chatbot.py``
|
42 |
+
# for implementation details.
|
43 |
+
|
44 |
+
from backend.services.codingo_chatbot import get_response as _codingo_get_response
|
45 |
+
|
46 |
+
|
47 |
+
def get_chatbot_response(query: str) -> str:
|
48 |
+
"""Proxy to the codingo_chatbot implementation.
|
49 |
+
|
50 |
+
This function exists to preserve the original public API of
|
51 |
+
``app.get_chatbot_response`` while redirecting calls to the new
|
52 |
+
implementation. It catches any exceptions and returns a user
|
53 |
+
friendly message, ensuring the Flask route never raises.
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
return _codingo_get_response(query)
|
57 |
+
except Exception as exc:
|
58 |
+
print(f"Chatbot error: {exc}", file=sys.stderr)
|
59 |
+
return (
|
60 |
+
"I'm having trouble processing your request. Please try again or ask "
|
61 |
+
"about Codingo's features, job matching, or how to use the platform."
|
62 |
+
)
|
63 |
|
64 |
# Initialize Flask app
|
65 |
app = Flask(
|
|
|
355 |
|
356 |
with app.app_context():
|
357 |
db.create_all()
|
358 |
+
# Pre-initialize chatbot on startup for faster first response
|
|
|
|
|
|
|
|
|
359 |
print("Initializing chatbot...")
|
360 |
try:
|
361 |
+
init_chatbot()
|
362 |
+
init_hf_model()
|
|
|
|
|
363 |
print("Chatbot initialized successfully")
|
364 |
except Exception as e:
|
365 |
print(f"Chatbot initialization warning: {e}")
|
backend/services/codingo_chatbot.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
codingo_chatbot.py
|
3 |
+
===================
|
4 |
+
|
5 |
+
This module encapsulates the logic for Codingo's website chatbot. It
|
6 |
+
loads a knowledge base from ``chatbot/chatbot.txt``, builds a vector
|
7 |
+
database using Chroma and SentenceTransformers, and uses a local LLM
|
8 |
+
powered by ``llama‑cpp‑python`` to generate answers constrained to the
|
9 |
+
retrieved context. The code is written to initialise all heavy
|
10 |
+
resources lazily on first use and to cache them for subsequent
|
11 |
+
requests. This prevents repeated model downloads and avoids
|
12 |
+
recomputing embeddings for every chat query.
|
13 |
+
|
14 |
+
The underlying LLM is the TinyLlama 1.1B chat model distributed via
|
15 |
+
Hugging Face in GGUF format. When the model file is not present
|
16 |
+
locally it is downloaded automatically using ``huggingface_hub``.
|
17 |
+
Depending on the environment the model will run on GPU if CUDA is
|
18 |
+
available or fall back to CPU otherwise. See the ``init_llm``
|
19 |
+
function for details.
|
20 |
+
|
21 |
+
Note: This module deliberately contains no references to OpenAI. It
|
22 |
+
relies solely on open‑source libraries available on PyPI (such as
|
23 |
+
``llama‑cpp‑python`` and ``chromadb``) so that it can be used on
|
24 |
+
Hugging Face Spaces without requiring proprietary API keys.
|
25 |
+
"""
|
26 |
+
|
27 |
+
from __future__ import annotations
|
28 |
+
|
29 |
+
import os
|
30 |
+
import threading
|
31 |
+
from typing import List
|
32 |
+
|
33 |
+
import numpy as np
|
34 |
+
|
35 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
36 |
+
from sentence_transformers import SentenceTransformer
|
37 |
+
import chromadb
|
38 |
+
from chromadb.config import Settings
|
39 |
+
from huggingface_hub import hf_hub_download
|
40 |
+
|
41 |
+
try:
|
42 |
+
from llama_cpp import Llama # type: ignore
|
43 |
+
except Exception as exc: # pragma: no cover - import may fail until dependency installed
|
44 |
+
# Provide a helpful error if llama_cpp isn't installed.
|
45 |
+
raise ImportError(
|
46 |
+
"llama_cpp is required for the chatbot. Please add 'llama-cpp-python' "
|
47 |
+
"to your requirements.txt"
|
48 |
+
) from exc
|
49 |
+
|
50 |
+
# ---------------------------------------------------------------------------
|
51 |
+
# Configuration
|
52 |
+
#
|
53 |
+
# Compute the absolute path to the chatbot knowledge base. We derive this
|
54 |
+
# relative to this file so that the module works regardless of the working
|
55 |
+
# directory. The project structure places ``chatbot.txt`` at
|
56 |
+
# ``Codingo12/chatbot/chatbot.txt``.
|
57 |
+
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
|
58 |
+
CHATBOT_TXT_PATH = os.path.join(PROJECT_ROOT, "chatbot", "chatbot.txt")
|
59 |
+
|
60 |
+
# Directory where Chroma will persist its database. This location is
|
61 |
+
# writable on both local machines and Hugging Face Spaces. It is
|
62 |
+
# intentionally distinct from the web app instance path to avoid
|
63 |
+
# permission issues.
|
64 |
+
CHROMA_DB_DIR = os.path.join("/tmp", "chatbot_chroma")
|
65 |
+
|
66 |
+
# Settings for the TinyLlama model. These can be overridden via
|
67 |
+
# environment variables if desired (for example to switch to a
|
68 |
+
# different quantisation or to test with a smaller model). See
|
69 |
+
# https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF for
|
70 |
+
# available filenames.
|
71 |
+
LLAMA_REPO = os.getenv(
|
72 |
+
"LLAMA_REPO",
|
73 |
+
"TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
74 |
+
)
|
75 |
+
LLAMA_FILE = os.getenv(
|
76 |
+
"LLAMA_FILE",
|
77 |
+
"tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
78 |
+
)
|
79 |
+
|
80 |
+
# Local directory where the GGUF model file will be stored. Using
|
81 |
+
# ``/tmp`` avoids writing into the read‑only repository filesystem on
|
82 |
+
# Hugging Face Spaces. The directory will be created as needed.
|
83 |
+
LLAMA_LOCAL_DIR = os.path.join("/tmp", "llama_models")
|
84 |
+
|
85 |
+
# Generation parameters. These values mirror those used in the
|
86 |
+
# provided Jupyter notebook. They can be tweaked via environment
|
87 |
+
# variables if necessary to trade off quality against speed.
|
88 |
+
MAX_TOKENS = int(os.getenv("LLAMA_MAX_TOKENS", "256"))
|
89 |
+
TEMPERATURE = float(os.getenv("LLAMA_TEMPERATURE", "0.7"))
|
90 |
+
TOP_P = float(os.getenv("LLAMA_TOP_P", "0.9"))
|
91 |
+
REPEAT_PENALTY = float(os.getenv("LLAMA_REPEAT_PENALTY", "1.15"))
|
92 |
+
|
93 |
+
# Thread lock to guard lazy initialisation in multi‑threaded Flask
|
94 |
+
# environments. Without this lock multiple concurrent requests may
|
95 |
+
# attempt to download the model or populate the database at the same
|
96 |
+
# time, leading to redundant work or race conditions.
|
97 |
+
_init_lock = threading.Lock()
|
98 |
+
|
99 |
+
# Global singletons for embedder, vector collection and LLM. These
|
100 |
+
# variables are populated on first use and reused thereafter.
|
101 |
+
_embedder: SentenceTransformer | None = None
|
102 |
+
_collection: chromadb.Collection | None = None
|
103 |
+
_llm: Llama | None = None
|
104 |
+
|
105 |
+
|
106 |
+
def _load_chatbot_text() -> str:
|
107 |
+
"""Read the chatbot knowledge base from disk.
|
108 |
+
|
109 |
+
If the file is missing, a small default description of Codingo is
|
110 |
+
returned. This ensures the chatbot still provides a sensible
|
111 |
+
answer rather than crashing.
|
112 |
+
"""
|
113 |
+
try:
|
114 |
+
with open(CHATBOT_TXT_PATH, encoding="utf-8") as f:
|
115 |
+
return f.read()
|
116 |
+
except FileNotFoundError:
|
117 |
+
# Fallback content if the knowledge base file is missing
|
118 |
+
return (
|
119 |
+
"Codingo is an AI‑powered recruitment platform designed to "
|
120 |
+
"streamline job applications, candidate screening and hiring. "
|
121 |
+
"We make hiring smarter, faster and fairer through automation "
|
122 |
+
"and intelligent recommendations."
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
def init_embedder_and_db() -> None:
|
127 |
+
"""Initialise the SentenceTransformer embedder and Chroma vector DB.
|
128 |
+
|
129 |
+
This function is idempotent: if the embedder and collection are
|
130 |
+
already initialised it returns immediately. Otherwise it reads
|
131 |
+
``chatbot.txt``, splits it into overlapping chunks, computes
|
132 |
+
embeddings and persists them to a Chroma collection. The
|
133 |
+
resulting ``SentenceTransformer`` and collection objects are saved
|
134 |
+
in global variables for later reuse.
|
135 |
+
"""
|
136 |
+
global _embedder, _collection
|
137 |
+
if _embedder is not None and _collection is not None:
|
138 |
+
return
|
139 |
+
with _init_lock:
|
140 |
+
if _embedder is not None and _collection is not None:
|
141 |
+
return
|
142 |
+
# Ensure persistence directory exists
|
143 |
+
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
144 |
+
|
145 |
+
# Read knowledge base
|
146 |
+
text = _load_chatbot_text()
|
147 |
+
|
148 |
+
# Split into chunks; use double newlines to prefer splitting on
|
149 |
+
# paragraph boundaries. Overlap helps the model maintain
|
150 |
+
# context across neighbouring chunks.
|
151 |
+
splitter = RecursiveCharacterTextSplitter(
|
152 |
+
chunk_size=300,
|
153 |
+
chunk_overlap=100,
|
154 |
+
separators=["\n\n"],
|
155 |
+
)
|
156 |
+
docs: List[str] = [doc.strip() for doc in splitter.split_text(text) if doc.strip()]
|
157 |
+
|
158 |
+
# Initialise embedder (MiniLM). We specify device via env.
|
159 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
160 |
+
embeddings = embedder.encode(docs, show_progress_bar=False, batch_size=32)
|
161 |
+
|
162 |
+
# Initialise Chroma client
|
163 |
+
client = chromadb.Client(
|
164 |
+
Settings(
|
165 |
+
persist_directory=CHROMA_DB_DIR,
|
166 |
+
anonymized_telemetry=False,
|
167 |
+
is_persistent=True,
|
168 |
+
)
|
169 |
+
)
|
170 |
+
|
171 |
+
# Create or get collection. This returns an existing collection if
|
172 |
+
# already present on disk.
|
173 |
+
collection = client.get_or_create_collection("codingo_chatbot")
|
174 |
+
|
175 |
+
# Populate collection only if empty. A naive call to
|
176 |
+
# ``collection.get(limit=1)`` may raise if the collection does
|
177 |
+
# not exist yet, so we catch any exception and treat it as an
|
178 |
+
# empty DB. Distances are stored as cosine similarity.
|
179 |
+
need_populate = False
|
180 |
+
try:
|
181 |
+
existing = collection.get(limit=1)
|
182 |
+
if not existing or not existing.get("documents"):
|
183 |
+
need_populate = True
|
184 |
+
except Exception:
|
185 |
+
need_populate = True
|
186 |
+
if need_populate:
|
187 |
+
ids = [f"doc_{i}" for i in range(len(docs))]
|
188 |
+
collection.add(documents=docs, embeddings=embeddings.tolist(), ids=ids)
|
189 |
+
_embedder = embedder
|
190 |
+
_collection = collection
|
191 |
+
|
192 |
+
|
193 |
+
def init_llm() -> None:
|
194 |
+
"""Initialise the llama‑cpp model for response generation.
|
195 |
+
|
196 |
+
This function lazily downloads the GGUF model from Hugging Face if
|
197 |
+
necessary and instantiates a ``llama_cpp.Llama`` object. The
|
198 |
+
resulting instance is stored in the global ``_llm`` variable. To
|
199 |
+
control GPU usage set the ``CUDA_VISIBLE_DEVICES`` environment
|
200 |
+
variable or override ``LLAMA_N_GPU_LAYERS``. By default we use one
|
201 |
+
GPU layer when CUDA is available, otherwise the model runs on CPU.
|
202 |
+
"""
|
203 |
+
global _llm
|
204 |
+
if _llm is not None:
|
205 |
+
return
|
206 |
+
with _init_lock:
|
207 |
+
if _llm is not None:
|
208 |
+
return
|
209 |
+
# Ensure the model directory exists
|
210 |
+
os.makedirs(LLAMA_LOCAL_DIR, exist_ok=True)
|
211 |
+
# Download model if not already present
|
212 |
+
local_path = os.path.join(LLAMA_LOCAL_DIR, LLAMA_FILE)
|
213 |
+
if not os.path.exists(local_path):
|
214 |
+
# The file will be downloaded to LLAMA_LOCAL_DIR. Use
|
215 |
+
# ``local_dir_use_symlinks=False`` to avoid creating
|
216 |
+
# symlinks that may break on certain filesystems.
|
217 |
+
local_path = hf_hub_download(
|
218 |
+
repo_id=LLAMA_REPO,
|
219 |
+
filename=LLAMA_FILE,
|
220 |
+
local_dir=LLAMA_LOCAL_DIR,
|
221 |
+
local_dir_use_symlinks=False,
|
222 |
+
)
|
223 |
+
# Determine GPU usage. We default to one GPU layer if CUDA
|
224 |
+
# appears available. Users can override via LLAMA_N_GPU_LAYERS.
|
225 |
+
try:
|
226 |
+
import torch # type: ignore
|
227 |
+
use_cuda = torch.cuda.is_available()
|
228 |
+
except Exception:
|
229 |
+
use_cuda = False
|
230 |
+
n_gpu_layers_env = os.getenv("LLAMA_N_GPU_LAYERS")
|
231 |
+
if n_gpu_layers_env:
|
232 |
+
try:
|
233 |
+
n_gpu_layers = int(n_gpu_layers_env)
|
234 |
+
except ValueError:
|
235 |
+
n_gpu_layers = 0
|
236 |
+
else:
|
237 |
+
n_gpu_layers = 1 if use_cuda else 0
|
238 |
+
# Construct the Llama instance. The context window is set
|
239 |
+
# generously to 2048 tokens; adjust via LLAMA_N_CTX if needed.
|
240 |
+
n_ctx = int(os.getenv("LLAMA_N_CTX", "2048"))
|
241 |
+
# Use half the available CPU cores for inference threads to
|
242 |
+
# balance responsiveness and resource use.
|
243 |
+
try:
|
244 |
+
n_threads = max(1, os.cpu_count() // 2)
|
245 |
+
except Exception:
|
246 |
+
n_threads = 2
|
247 |
+
_llm = Llama(
|
248 |
+
model_path=local_path,
|
249 |
+
n_ctx=n_ctx,
|
250 |
+
n_threads=n_threads,
|
251 |
+
n_gpu_layers=n_gpu_layers,
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
def _build_prompt(query: str, context: str) -> str:
|
256 |
+
"""Construct the full prompt for the TinyLlama chat model.
|
257 |
+
|
258 |
+
The prompt format follows the conventions used by the model as
|
259 |
+
illustrated in the provided notebook. We include a system message
|
260 |
+
instructing the model to answer only using the given context and to
|
261 |
+
politely decline if the information is unavailable.
|
262 |
+
"""
|
263 |
+
system_prompt = (
|
264 |
+
"You are the official chatbot of Codingo. "
|
265 |
+
"Answer ONLY by using the CONTEXT. "
|
266 |
+
"If the information is not available for you, say it politely."
|
267 |
+
)
|
268 |
+
prompt = (
|
269 |
+
f"<|system|>\n{system_prompt}</s>\n"
|
270 |
+
f"<|user|>\n{query}\n\nCONTEXTE:\n{context}</s>\n"
|
271 |
+
f"<|assistant|>\n"
|
272 |
+
)
|
273 |
+
return prompt
|
274 |
+
|
275 |
+
|
276 |
+
def get_response(query: str, k: int = 3, score_threshold: float = 2.0) -> str:
|
277 |
+
"""Return a chatbot response for the given query.
|
278 |
+
|
279 |
+
This function performs the following steps:
|
280 |
+
|
281 |
+
1. Ensures the embedder, vector database and LLM are initialised.
|
282 |
+
2. Embeds the user's query and retrieves the top ``k`` most
|
283 |
+
similar documents from the Chroma collection.
|
284 |
+
3. Filters out documents whose cosine distance exceeds
|
285 |
+
``score_threshold`` (larger distances indicate less similarity).
|
286 |
+
4. Builds a prompt containing the user query and the concatenated
|
287 |
+
relevant context.
|
288 |
+
5. Feeds the prompt to the TinyLlama model and returns its
|
289 |
+
response, trimming trailing whitespace.
|
290 |
+
|
291 |
+
If no relevant context is found, a fallback message is returned.
|
292 |
+
"""
|
293 |
+
if not query or not query.strip():
|
294 |
+
return "Please type a question about the Codingo platform."
|
295 |
+
init_embedder_and_db()
|
296 |
+
init_llm()
|
297 |
+
assert _embedder is not None and _collection is not None and _llm is not None
|
298 |
+
# Embed query and search collection
|
299 |
+
query_vector = _embedder.encode([query])[0]
|
300 |
+
results = _collection.query(query_embeddings=[query_vector.tolist()], n_results=k)
|
301 |
+
docs = results.get("documents", [[]])[0] if results else []
|
302 |
+
distances = results.get("distances", [[]])[0] if results else []
|
303 |
+
# Filter by score
|
304 |
+
relevant: List[str] = [d for d, s in zip(docs, distances) if s < score_threshold]
|
305 |
+
if not relevant:
|
306 |
+
return "Sorry, I don't have enough information to answer that question."
|
307 |
+
context = "\n\n".join(relevant)
|
308 |
+
prompt = _build_prompt(query, context)
|
309 |
+
# Generate completion
|
310 |
+
output = _llm(
|
311 |
+
prompt,
|
312 |
+
max_tokens=MAX_TOKENS,
|
313 |
+
temperature=TEMPERATURE,
|
314 |
+
top_p=TOP_P,
|
315 |
+
repeat_penalty=REPEAT_PENALTY,
|
316 |
+
stop=["</s>"]
|
317 |
+
)
|
318 |
+
text = output["choices"][0]["text"].strip()
|
319 |
+
return text or "I'm here to answer your questions about Codingo. What would you like to know?"
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
flask
|
2 |
flask_login
|
3 |
flask_sqlalchemy
|
@@ -55,5 +56,7 @@ pydub>=0.25.1
|
|
55 |
requests>=2.31.0
|
56 |
|
57 |
# Additional dependencies for improved chatbot functionality
|
58 |
-
# Note:
|
59 |
-
#
|
|
|
|
|
|
1 |
+
|
2 |
flask
|
3 |
flask_login
|
4 |
flask_sqlalchemy
|
|
|
56 |
requests>=2.31.0
|
57 |
|
58 |
# Additional dependencies for improved chatbot functionality
|
59 |
+
# Note: The chatbot now uses a local Llama model via ``llama-cpp-python``.
|
60 |
+
# We include the dependency here so that it is installed on Hugging Face
|
61 |
+
# Spaces. The version is pinned for reproducibility and compatibility.
|
62 |
+
llama-cpp-python==0.2.27
|