import os import uuid import json from flask import Blueprint, request, jsonify, send_file, url_for, current_app from flask_login import login_required, current_user from backend.models.database import db, Job, Application from backend.services.interview_engine import ( generate_first_question, edge_tts_to_file_sync, whisper_stt, evaluate_answer ) interview_api = Blueprint("interview_api", __name__) @interview_api.route("/start_interview", methods=["POST"]) @login_required def start_interview(): data = request.get_json() job_id = data.get("job_id") job = Job.query.get_or_404(job_id) application = Application.query.filter_by( user_id=current_user.id, job_id=job_id ).first() if not application or not application.extracted_features: return jsonify({"error": "No application/profile data found."}), 400 try: profile = json.loads(application.extracted_features) except: return jsonify({"error": "Invalid profile JSON"}), 500 question = generate_first_question(profile, job) # Use /tmp directory which is writable in Hugging Face Spaces audio_dir = "/tmp/audio" os.makedirs(audio_dir, exist_ok=True) audio_filename = f"q_{uuid.uuid4().hex}.wav" audio_path = os.path.join(audio_dir, audio_filename) # Generate audio synchronously. The function returns None on error. audio_out = edge_tts_to_file_sync(question, audio_path) if audio_out and os.path.exists(audio_path): return send_file(audio_path, mimetype="audio/wav", as_attachment=False) else: # Fallback to JSON response if audio generation fails return jsonify({"question": question}) @interview_api.route("/transcribe_audio", methods=["POST"]) @login_required def transcribe_audio(): audio_file = request.files.get("audio") if not audio_file: return jsonify({"error": "No audio file received."}), 400 # Use /tmp directory which is writable in Hugging Face Spaces temp_dir = "/tmp/interview_temp" os.makedirs(temp_dir, exist_ok=True) filename = f"user_audio_{uuid.uuid4().hex}.wav" path = os.path.join(temp_dir, filename) audio_file.save(path) transcript = whisper_stt(path) # Clean up try: os.remove(path) except: pass return jsonify({"transcript": transcript}) @interview_api.route("/process_answer", methods=["POST"]) @login_required def process_answer(): data = request.get_json() answer = data.get("answer", "") question_idx = data.get("questionIndex", 0) # Generate next question (simplified for now). In a full implementation this # would call a model such as groq_llm to generate a follow‑up question based # on the candidate's answer. next_question = f"Follow‑up question {question_idx + 2}: Can you elaborate on your experience with relevant technologies?" # Use /tmp directory for audio files audio_dir = "/tmp/audio" os.makedirs(audio_dir, exist_ok=True) audio_filename = f"q_{uuid.uuid4().hex}.wav" audio_path = os.path.join(audio_dir, audio_filename) # Attempt to generate speech for the next question. If audio generation # fails, ``audio_out`` will be None and we return JSON response instead. audio_out = edge_tts_to_file_sync(next_question, audio_path) if audio_out and os.path.exists(audio_path): return send_file(audio_path, mimetype="audio/wav", as_attachment=False) else: # Fallback to JSON response response = { "success": True, "nextQuestion": next_question, "evaluation": { "score": "medium", "feedback": "Good answer, but be more specific." }, "isComplete": question_idx >= 2, "summary": [] } return jsonify(response)