import os import json import asyncio import edge_tts from faster_whisper import WhisperModel from langchain_groq import ChatGroq import logging # Initialize models chat_groq_api = os.getenv("GROQ_API_KEY", "your-groq-api-key") groq_llm = ChatGroq( temperature=0.7, model_name="llama-3.3-70b-versatile", api_key=chat_groq_api ) # Initialize Whisper model whisper_model = None def load_whisper_model(): global whisper_model if whisper_model is None: device = "cuda" if os.system("nvidia-smi") == 0 else "cpu" compute_type = "float16" if device == "cuda" else "int8" whisper_model = WhisperModel("base", device=device, compute_type=compute_type) return whisper_model def generate_first_question(profile, job): """Generate the first interview question based on profile and job""" try: prompt = f""" You are conducting an interview for a {job.role} position at {job.company}. The candidate's profile shows: - Skills: {profile.get('skills', [])} - Experience: {profile.get('experience', [])} - Education: {profile.get('education', [])} Generate an appropriate opening interview question that is professional and relevant. Keep it concise and clear. """ response = groq_llm.predict(prompt) return response.strip() except Exception as e: logging.error(f"Error generating first question: {e}") return "Tell me about yourself and why you're interested in this position." def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"): """Synchronous wrapper for edge-tts""" try: # Create directory if it doesn't exist os.makedirs(os.path.dirname(output_path), exist_ok=True) async def generate_audio(): communicate = edge_tts.Communicate(text, voice) await communicate.save(output_path) # Run async function in sync context loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete(generate_audio()) loop.close() return output_path except Exception as e: logging.error(f"Error in TTS generation: {e}") return None def whisper_stt(audio_path): """Speech-to-text using Faster-Whisper""" try: if not audio_path or not os.path.exists(audio_path): return "" model = load_whisper_model() segments, _ = model.transcribe(audio_path) transcript = " ".join(segment.text for segment in segments) return transcript.strip() except Exception as e: logging.error(f"Error in STT: {e}") return "" def evaluate_answer(question, answer, ref_answer, job_role, seniority): """Evaluate candidate's answer""" try: prompt = f""" You are evaluating a candidate's answer for a {seniority} {job_role} position. Question: {question} Candidate Answer: {answer} Reference Answer: {ref_answer} Evaluate based on technical correctness, clarity, and relevance. Respond with JSON format: {{ "Score": "Poor|Medium|Good|Excellent", "Reasoning": "brief explanation", "Improvements": ["suggestion1", "suggestion2"] }} """ response = groq_llm.predict(prompt) # Extract JSON from response start_idx = response.find("{") end_idx = response.rfind("}") + 1 json_str = response[start_idx:end_idx] return json.loads(json_str) except Exception as e: logging.error(f"Error evaluating answer: {e}") return { "Score": "Medium", "Reasoning": "Evaluation failed", "Improvements": ["Please be more specific"] }