from __future__ import annotations import os, re, subprocess, zipfile, json, torch from typing import List from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # Limit threads to avoid Hugging Face Spaces threading issues os.environ.update({ "OMP_NUM_THREADS": "1", "OPENBLAS_NUM_THREADS": "1", "MKL_NUM_THREADS": "1", "NUMEXPR_NUM_THREADS": "1", "VECLIB_MAXIMUM_THREADS": "1" }) # Load Zephyr in 4-bit bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "HuggingFaceH4/zephyr-7b-beta", quantization_config=bnb_config, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True ) # =============================== # Text Extraction (PDF/DOCX) # =============================== def extract_text(file_path: str) -> str: if not file_path or not os.path.isfile(file_path): return "" try: if file_path.lower().endswith('.pdf'): result = subprocess.run( ['pdftotext', '-layout', file_path, '-'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False ) return result.stdout.decode('utf-8', errors='ignore') elif file_path.lower().endswith('.docx'): with zipfile.ZipFile(file_path) as zf: with zf.open('word/document.xml') as docx_xml: xml_bytes = docx_xml.read() xml_text = xml_bytes.decode('utf-8', errors='ignore') xml_text = re.sub(r']*>', '\n', xml_text, flags=re.I) text = re.sub(r'<[^>]+>', ' ', xml_text) return re.sub(r'\s+', ' ', text) except Exception: pass return "" # =============================== # Name Extraction (Fallback) # =============================== def extract_name(text: str, filename: str) -> str: if text: lines = [ln.strip() for ln in text.splitlines() if ln.strip()] for line in lines[:10]: if not re.match(r'(?i)resume|curriculum vitae', line): words = line.split() if 1 < len(words) <= 4 and all(re.match(r'^[A-ZÀ-ÖØ-Þ][\w\-]*', w) for w in words): return line base = os.path.basename(filename) base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I) base = re.sub(r'[\._-]+', ' ', base) base = re.sub(r'(?i)\b(cv|resume)\b', '', base) return base.title().strip() # =============================== # Zephyr Parsing # =============================== def parse_with_zephyr(text: str) -> dict: """Use Zephyr-7B to extract resume details in JSON format.""" prompt = f""" You are an information extraction system. Extract the following fields from the resume text. ⚠️ DO NOT return placeholders like "Full Name" or "Skill1". Return ONLY actual values from the resume. If a field is missing, leave it as an empty string or empty list. Fields to extract: - name - skills (list of skills) - education (list of degrees + institutions) - experience (list of jobs with company, title, dates) Resume: {text} Return ONLY a valid JSON in this format: {{ "name": "", "skills": ["", ""], "education": ["", ""], "experience": ["", ""] }} """ inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False, temperature=0) response = tokenizer.decode(outputs[0], skip_special_tokens=True) match = re.search(r"\{.*\}", response, re.S) if match: try: return json.loads(match.group()) except: pass return {"name": "", "skills": [], "education": [], "experience": []} # =============================== # Main Parse Function # =============================== def parse_resume(file_path: str, filename: str) -> dict: text = extract_text(file_path) name_fallback = extract_name(text, filename) data = parse_with_zephyr(text) if not data.get("name"): data["name"] = name_fallback return data