from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline import zipfile, re, os # =============================== # Load Model & Tokenizer # =============================== MODEL_NAME = "sravya-abburi/ResumeParserBERT" # Change to Kiet/autotrain-resume_parser-1159242747 if needed tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # =============================== # Extract Text (PDF & DOCX) # =============================== def extract_text(file_path: str) -> str: """Extract text from PDF or DOCX without external dependencies.""" file_path_lower = file_path.lower() # PDF reading using PyMuPDF (built into Spaces environment) if file_path_lower.endswith(".pdf"): import fitz # PyMuPDF text = "" with fitz.open(file_path) as pdf_doc: for page in pdf_doc: text += page.get_text() return text # DOCX reading by extracting XML content elif file_path_lower.endswith(".docx"): with zipfile.ZipFile(file_path) as zf: with zf.open("word/document.xml") as docx_xml: xml_text = docx_xml.read().decode("utf-8", errors="ignore") xml_text = re.sub(r"]*>", "\n", xml_text, flags=re.I) return re.sub(r"<[^>]+>", " ", xml_text) return "" # =============================== # Parse Resume # =============================== def parse_resume(file_path: str, filename: str = None) -> dict: """Parse resume and extract structured information.""" text = extract_text(file_path) entities = ner_pipeline(text) name, skills, education, experience = [], [], [], [] for ent in entities: label = ent["entity_group"].upper() word = ent["word"].strip() if label == "NAME": name.append(word) elif label == "SKILL": skills.append(word) elif label in ["EDUCATION", "DEGREE"]: education.append(word) elif label in ["EXPERIENCE", "JOB", "ROLE"]: experience.append(word) return { "name": " ".join(dict.fromkeys(name)), "skills": ", ".join(dict.fromkeys(skills)), "education": ", ".join(dict.fromkeys(education)), "experience": ", ".join(dict.fromkeys(experience)) }