from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline import subprocess, zipfile, re, os # === Load pretrained HF model === MODEL_NAME = "sravya-abburi/ResumeParserBERT" # or "Kiet/autotrain-resume_parser-1159242747" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) # Use CPU for stability (device=-1) to avoid GPU memory issues from other parts of the app ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=-1) # === Extract text from PDF/DOCX === def extract_text(file_path: str) -> str: """Extract text from PDF or DOCX resumes.""" if file_path.lower().endswith(".pdf"): result = subprocess.run( ["pdftotext", "-layout", file_path, "-"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False ) return result.stdout.decode("utf-8", errors="ignore") elif file_path.lower().endswith(".docx"): with zipfile.ZipFile(file_path) as zf: with zf.open("word/document.xml") as docx_xml: xml_text = docx_xml.read().decode("utf-8", errors="ignore") xml_text = re.sub(r"]*>", "\n", xml_text, flags=re.I) return re.sub(r"<[^>]+>", " ", xml_text) return "" # === Parse resume with NER === def parse_resume(file_path: str, filename: str = None) -> dict: """Parse resume and extract Name, Skills, Education, Experience.""" text = extract_text(file_path) entities = ner_pipeline(text) name, skills, education, experience = [], [], [], [] for ent in entities: word = ent["word"].strip() label = ent["entity_group"].upper() # Skip empty or placeholder tokens if not word or word.startswith("LABEL_"): continue if label == "NAME": name.append(word) elif label == "SKILL": skills.append(word) elif label in ["EDUCATION", "DEGREE"]: education.append(word) elif label in ["EXPERIENCE", "JOB", "ROLE"]: experience.append(word) return { "name": " ".join(dict.fromkeys(name)), "skills": ", ".join(dict.fromkeys(skills)), "education": ", ".join(dict.fromkeys(education)), "experience": ", ".join(dict.fromkeys(experience)) }