from __future__ import annotations import os import re import subprocess import zipfile import json import torch from typing import List from transformers import AutoModelForCausalLM, AutoTokenizer # =============================== # Load DeepSeek Janus-Pro-7B Model # =============================== MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2" print(f"Loading {MODEL_ID}... (This may take some time on first run)") tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16, device_map="auto" ) # =============================== # Text Extraction (PDF/DOCX) # =============================== def extract_text(file_path: str) -> str: """Extract text from PDF or DOCX resumes.""" if not file_path or not os.path.isfile(file_path): return "" lower_name = file_path.lower() try: if lower_name.endswith('.pdf'): result = subprocess.run( ['pdftotext', '-layout', file_path, '-'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False ) return result.stdout.decode('utf-8', errors='ignore') elif lower_name.endswith('.docx'): with zipfile.ZipFile(file_path) as zf: with zf.open('word/document.xml') as docx_xml: xml_bytes = docx_xml.read() xml_text = xml_bytes.decode('utf-8', errors='ignore') xml_text = re.sub(r']*>', '\n', xml_text, flags=re.I) text = re.sub(r'<[^>]+>', ' ', xml_text) return re.sub(r'\s+', ' ', text) else: return "" except Exception: return "" # =============================== # Name Extraction (Fallback) # =============================== def extract_name(text: str, filename: str) -> str: """Extract candidate's name from resume text or filename.""" if text: lines = [ln.strip() for ln in text.splitlines() if ln.strip()] for line in lines[:10]: if re.match(r'(?i)resume|curriculum vitae', line): continue words = line.split() if 1 < len(words) <= 4: if all(re.match(r'^[A-ZÀ-ÖØ-Þ][\w\-]*', w) for w in words): return line base = os.path.basename(filename) base = re.sub(r'\.(pdf|docx|doc)$', '', base, flags=re.I) base = re.sub(r'[\._-]+', ' ', base) base = re.sub(r'(?i)\b(cv|resume)\b', '', base) return base.title().strip() # =============================== # Janus-Pro Parsing # =============================== def parse_with_deepseek(text: str) -> dict: """Use DeepSeek Janus-Pro-7B to extract resume details in JSON format.""" prompt = f""" Extract the following information from the resume text below: - Full Name - Skills (comma separated) - Education (degrees + institutions) - Experience (job titles + companies) Return only valid JSON in the following structure: {{ "name": "Full Name", "skills": "Skill1, Skill2, Skill3", "education": "Degree1 - Institution1; Degree2 - Institution2", "experience": "Job1 - Company1; Job2 - Company2" }} Resume: {text} """ inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract JSON safely match = re.search(r"\{.*\}", response, re.S) if match: try: return json.loads(match.group()) except: pass return {"name": "", "skills": "", "education": "", "experience": ""} # =============================== # Fallback Heading-based Parsing # =============================== def fallback_parse(text: str) -> dict: """Simple heading-based parsing as backup.""" skills = re.findall(r"Skills\s*[:\-]?\s*(.*)", text, re.I) education = re.findall(r"Education\s*[:\-]?\s*(.*)", text, re.I) experience = re.findall(r"(Experience|Work History)\s*[:\-]?\s*(.*)", text, re.I) return { "skills": ", ".join(skills), "education": ", ".join(education), "experience": ", ".join([exp[1] for exp in experience]) } # =============================== # Main Parse Function # =============================== def parse_resume(file_path: str, filename: str) -> dict: """Main resume parsing function.""" text = extract_text(file_path) name = extract_name(text, filename) # Try Janus-Pro parsing ents = parse_with_deepseek(text) # If Janus-Pro misses fields, use fallback if not ents.get("skills") or not ents.get("education"): fb = fallback_parse(text) ents["skills"] = ents.get("skills") or fb["skills"] ents["education"] = ents.get("education") or fb["education"] ents["experience"] = ents.get("experience") or fb["experience"] return { "name": ents.get("name") or name, "skills": ents.get("skills", ""), "education": ents.get("education", ""), "experience": ents.get("experience", "") }