import os import uuid import json import logging from flask import Blueprint, request, jsonify, send_file, url_for, current_app from flask_login import login_required, current_user from backend.models.database import db, Job, Application from backend.services.interview_engine import ( generate_first_question, edge_tts_to_file_sync, whisper_stt, evaluate_answer ) interview_api = Blueprint("interview_api", __name__) @interview_api.route("/start_interview", methods=["POST"]) @login_required def start_interview(): """ Start a new interview. Generates the first question based on the user's resume/profile and the selected job. Always returns a JSON payload containing the question text and, if available, a URL to an audio rendition of the question. """ try: data = request.get_json() or {} job_id = data.get("job_id") # Validate the job and the user's application job = Job.query.get_or_404(job_id) application = Application.query.filter_by( user_id=current_user.id, job_id=job_id ).first() if not application or not application.extracted_features: return jsonify({"error": "No application/profile data found."}), 400 # Parse the candidate's profile try: profile = json.loads(application.extracted_features) except Exception as e: logging.error(f"Invalid profile JSON: {e}") return jsonify({"error": "Invalid profile JSON"}), 500 # Generate the first question using the LLM question = generate_first_question(profile, job) if not question: question = "Tell me about yourself and why you're interested in this position." # Attempt to generate a TTS audio file for the question audio_url = None try: audio_dir = "/tmp/audio" os.makedirs(audio_dir, exist_ok=True) filename = f"q_{uuid.uuid4().hex}.wav" audio_path = os.path.join(audio_dir, filename) audio_result = edge_tts_to_file_sync(question, audio_path) if audio_result and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000: audio_url = url_for("interview_api.get_audio", filename=filename) logging.info(f"Audio generated successfully: {audio_url}") else: logging.warning("Audio generation failed or file too small") except Exception as e: logging.error(f"Error generating TTS audio: {e}") audio_url = None return jsonify({ "question": question, "audio_url": audio_url }) except Exception as e: logging.error(f"Error in start_interview: {e}") return jsonify({"error": "Internal server error"}), 500 import subprocess @interview_api.route("/transcribe_audio", methods=["POST"]) @login_required def transcribe_audio(): """Transcribe uploaded .webm audio using ffmpeg conversion and Faster-Whisper""" audio_file = request.files.get("audio") if not audio_file: return jsonify({"error": "No audio file received."}), 400 temp_dir = "/tmp/interview_temp" os.makedirs(temp_dir, exist_ok=True) original_path = os.path.join(temp_dir, f"user_audio_{uuid.uuid4().hex}.webm") wav_path = original_path.replace(".webm", ".wav") audio_file.save(original_path) # Convert to WAV using ffmpeg try: subprocess.run( ["ffmpeg", "-y", "-i", original_path, wav_path], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL ) except Exception as e: logging.error(f"FFmpeg conversion failed: {e}") return jsonify({"error": "Failed to convert audio"}), 500 # Transcribe transcript = whisper_stt(wav_path) # Cleanup try: os.remove(original_path) os.remove(wav_path) except: pass if not transcript or not transcript.strip(): return jsonify({"error": "No speech detected in audio. Please try again."}), 400 return jsonify({"transcript": transcript}) @interview_api.route("/process_answer", methods=["POST"]) @login_required def process_answer(): """ Process a user's answer and return a follow‑up question along with an evaluation. Always responds with JSON. """ try: data = request.get_json() or {} answer = data.get("answer", "").strip() question_idx = data.get("questionIndex", 0) if not answer: return jsonify({"error": "No answer provided."}), 400 # Get the current question for evaluation context current_question = data.get("current_question", "Tell me about yourself") # Evaluate the answer evaluation_result = evaluate_answer(current_question, answer) # Determine completion (3 questions in total, zero‑based index) is_complete = question_idx >= 2 next_question_text = None audio_url = None if not is_complete: # Generate the next question based on the current question index. # # Question indices are zero‑based: 0 for the first follow‑up question, # 1 for the second, and so on. We want the final (third) question # delivered by this route to always probe the candidate's salary # expectations and preferred working arrangement. After the user # answers this question (i.e. when ``question_idx`` becomes 2), the # interview is considered complete and no further questions are # generated. if question_idx == 0: next_question_text = "Can you describe a challenging project you've worked on and how you overcame the difficulties?" elif question_idx == 1: # Salary expectations question for the final interview round next_question_text = ( "What are your salary expectations? Are you looking for a full-time or part-time role, " "and do you prefer remote or on-site work?" ) else: # Fallback for unexpected indices; ask if the candidate has any questions. next_question_text = "Do you have any questions about the role or our company?" # Try to generate audio for the next question try: audio_dir = "/tmp/audio" os.makedirs(audio_dir, exist_ok=True) filename = f"q_{uuid.uuid4().hex}.wav" audio_path = os.path.join(audio_dir, filename) audio_result = edge_tts_to_file_sync(next_question_text, audio_path) if audio_result and os.path.exists(audio_path) and os.path.getsize(audio_path) > 1000: audio_url = url_for("interview_api.get_audio", filename=filename) logging.info(f"Next question audio generated: {audio_url}") except Exception as e: logging.error(f"Error generating next question audio: {e}") audio_url = None return jsonify({ "success": True, "next_question": next_question_text, "audio_url": audio_url, "evaluation": evaluation_result, "is_complete": is_complete }) except Exception as e: logging.error(f"Error in process_answer: {e}") return jsonify({"error": "Error processing answer. Please try again."}), 500 @interview_api.route("/audio/", methods=["GET"]) @login_required def get_audio(filename: str): """Serve previously generated TTS audio from the /tmp/audio directory.""" try: # Sanitize filename to prevent directory traversal safe_name = os.path.basename(filename) if not safe_name.endswith('.wav'): return jsonify({"error": "Invalid audio file format."}), 400 audio_path = os.path.join("/tmp/audio", safe_name) if not os.path.exists(audio_path): logging.warning(f"Audio file not found: {audio_path}") return jsonify({"error": "Audio file not found."}), 404 if os.path.getsize(audio_path) == 0: logging.warning(f"Audio file is empty: {audio_path}") return jsonify({"error": "Audio file is empty."}), 404 return send_file( audio_path, mimetype="audio/wav", as_attachment=False, conditional=True # Enable range requests for better audio streaming ) except Exception as e: logging.error(f"Error serving audio file {filename}: {e}") return jsonify({"error": "Error serving audio file."}), 500