import re from pathlib import Path from typing import Dict, List, Tuple import spacy from pdfminer.high_level import extract_text as pdf_extract_text from docx import Document from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline import nltk from nltk.corpus import stopwords from dateutil.parser import parse as date_parse # Download required NLTK data try: nltk.download('stopwords', quiet=True) nltk.download('punkt', quiet=True) except: pass # Load spaCy model for better NER try: nlp = spacy.load("en_core_web_sm") except: print("Please install spacy model: python -m spacy download en_core_web_sm") nlp = None MODEL_NAME = "manishiitg/resume-ner" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME) ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # Expanded keyword lists SKILL_KEYWORDS = { # Programming Languages "python", "java", "javascript", "typescript", "c++", "c#", "ruby", "go", "rust", "kotlin", "swift", "php", "r", "matlab", "scala", "perl", "bash", "powershell", "sql", "html", "css", # Frameworks & Libraries "react", "angular", "vue", "node.js", "express", "django", "flask", "spring", "spring boot", ".net", "laravel", "rails", "fastapi", "pytorch", "tensorflow", "keras", "scikit-learn", # Databases "mysql", "postgresql", "mongodb", "redis", "elasticsearch", "cassandra", "oracle", "sql server", # Cloud & DevOps "aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "terraform", "ansible", "ci/cd", # Other Technical Skills "machine learning", "deep learning", "data science", "nlp", "computer vision", "ai", "rest api", "graphql", "microservices", "agile", "scrum", "git", "linux", "windows" } EDUCATION_PATTERNS = [ # Degrees r"\b(bachelor|b\.?s\.?c?\.?|b\.?a\.?|b\.?tech|b\.?e\.?)\b", r"\b(master|m\.?s\.?c?\.?|m\.?a\.?|m\.?tech|m\.?e\.?|mba)\b", r"\b(ph\.?d\.?|doctorate|doctoral)\b", r"\b(diploma|certificate|certification)\b", # Fields of Study r"\b(computer science|software engineering|information technology|it|cs)\b", r"\b(electrical engineering|mechanical engineering|civil engineering)\b", r"\b(data science|artificial intelligence|machine learning)\b", r"\b(business administration|finance|accounting|marketing)\b", # Institution indicators r"\b(university|college|institute|school)\s+of\s+\w+", r"\b\w+\s+(university|college|institute)\b" ] JOB_TITLE_PATTERNS = [ r"\b(software|senior|junior|lead|principal|staff)\s*(engineer|developer|programmer)\b", r"\b(data|business|system|security)\s*(analyst|scientist|engineer)\b", r"\b(project|product|program|engineering)\s*manager\b", r"\b(devops|cloud|ml|ai|backend|frontend|full[\s-]?stack)\s*(engineer|developer)\b", r"\b(consultant|architect|specialist|coordinator|administrator)\b" ] def extract_text(file_path: str) -> str: """Extract text from PDF or DOCX files""" path = Path(file_path) if path.suffix.lower() == ".pdf": text = pdf_extract_text(file_path) elif path.suffix.lower() == ".docx": doc = Document(file_path) text = "\n".join([p.text for p in doc.paragraphs]) else: raise ValueError("Unsupported file format") return text def clean_text(text: str) -> str: """Clean and normalize text""" # Remove multiple spaces and normalize text = re.sub(r'\s+', ' ', text) # Keep line breaks for section detection text = re.sub(r'\n{3,}', '\n\n', text) return text.strip() def extract_sections(text: str) -> Dict[str, str]: """Extract different sections from resume""" sections = { 'education': '', 'experience': '', 'skills': '', 'summary': '' } # Common section headers section_patterns = { 'education': r'(education|academic|qualification|degree)', 'experience': r'(experience|employment|work\s*history|professional\s*experience|career)', 'skills': r'(skills|technical\s*skills|competencies|expertise)', 'summary': r'(summary|objective|profile|about)' } lines = text.split('\n') current_section = None for i, line in enumerate(lines): line_lower = line.lower().strip() # Check if this line is a section header for section, pattern in section_patterns.items(): if re.search(pattern, line_lower) and len(line_lower) < 50: current_section = section break # Add content to current section if current_section and i > 0: sections[current_section] += line + '\n' return sections def extract_name(text: str, entities: List) -> str: """Extract name using multiple methods""" # Method 1: Use transformer model name_parts = [] for ent in entities: if ent["entity_group"].upper() in ["NAME", "PERSON", "PER"]: name_parts.append(ent["word"].strip()) if name_parts: # Clean and join name parts full_name = " ".join(dict.fromkeys(name_parts)) full_name = re.sub(r'\s+', ' ', full_name).strip() if len(full_name) > 3 and len(full_name.split()) <= 4: return full_name # Method 2: Use spaCy if available if nlp: doc = nlp(text[:500]) # Check first 500 chars for ent in doc.ents: if ent.label_ == "PERSON": name = ent.text.strip() if len(name) > 3 and len(name.split()) <= 4: return name # Method 3: Pattern matching for first few lines first_lines = text.split('\n')[:5] for line in first_lines: line = line.strip() # Look for name pattern (2-4 words, title case) if re.match(r'^[A-Z][a-z]+(\s+[A-Z][a-z]+){1,3}$', line): return line return "Not Found" def extract_skills(text: str, skill_section: str = "") -> List[str]: """Extract skills using multiple methods""" skills_found = set() # Prioritize skills section if available search_text = skill_section + " " + text if skill_section else text search_text = search_text.lower() # Method 1: Direct keyword matching for skill in SKILL_KEYWORDS: if re.search(rf'\b{re.escape(skill.lower())}\b', search_text): skills_found.add(skill) # Method 2: Pattern-based extraction # Look for skills in bullet points or comma-separated lists skill_patterns = [ r'[•·▪▫◦‣⁃]\s*([A-Za-z\s\+\#\.]+)', # Bullet points r'(?:skills?|technologies|tools?)[\s:]*([A-Za-z\s,\+\#\.]+)', # After keywords ] for pattern in skill_patterns: matches = re.findall(pattern, search_text, re.IGNORECASE) for match in matches: # Check each word/phrase in the match potential_skills = re.split(r'[,;]', match) for ps in potential_skills: ps = ps.strip().lower() if ps in SKILL_KEYWORDS: skills_found.add(ps) return list(skills_found) def extract_education(text: str, edu_section: str = "") -> List[str]: """Extract education information""" education_info = [] search_text = edu_section + " " + text if edu_section else text # Extract degrees for pattern in EDUCATION_PATTERNS: matches = re.findall(pattern, search_text, re.IGNORECASE) for match in matches: if isinstance(match, tuple): match = match[0] education_info.append(match) # Extract years (graduation years) year_pattern = r'\b(19[0-9]{2}|20[0-9]{2})\b' years = re.findall(year_pattern, search_text) # Extract GPA if mentioned gpa_pattern = r'(?:gpa|cgpa|grade)[\s:]*([0-9]\.[0-9]+)' gpa_matches = re.findall(gpa_pattern, search_text, re.IGNORECASE) return list(dict.fromkeys(education_info)) # Remove duplicates def extract_experience(text: str, exp_section: str = "") -> List[str]: """Extract experience information""" experience_info = [] search_text = exp_section + " " + text if exp_section else text # Extract job titles for pattern in JOB_TITLE_PATTERNS: matches = re.findall(pattern, search_text, re.IGNORECASE) for match in matches: if isinstance(match, tuple): match = ' '.join(match).strip() experience_info.append(match) # Extract years of experience exp_patterns = [ r'(\d+)\+?\s*(?:years?|yrs?)(?:\s+of)?\s+experience', r'experience\s*:?\s*(\d+)\+?\s*(?:years?|yrs?)', r'(\d+)\+?\s*(?:years?|yrs?)\s+(?:as|in|of)', ] for pattern in exp_patterns: matches = re.findall(pattern, search_text, re.IGNORECASE) if matches: years = max(map(int, matches)) experience_info.append(f"{years}+ years experience") break # Extract company names (common patterns) company_patterns = [ r'(?:at|@|company|employer)\s*:?\s*([A-Z][A-Za-z\s&\.\-]+)', r'([A-Z][A-Za-z\s&\.\-]+)\s*(?:inc|llc|ltd|corp|company)', ] for pattern in company_patterns: matches = re.findall(pattern, search_text) experience_info.extend(matches[:3]) # Limit to avoid false positives return list(dict.fromkeys(experience_info)) def parse_resume(file_path: str, filename: str = None) -> Dict[str, str]: """Main function to parse resume""" # Extract and clean text raw_text = extract_text(file_path) text = clean_text(raw_text) # Extract sections sections = extract_sections(text) # Get NER entities entities = ner_pipeline(text[:1024]) # Limit for performance # Extract information name = extract_name(text, entities) skills = extract_skills(text, sections.get('skills', '')) education = extract_education(text, sections.get('education', '')) experience = extract_experience(text, sections.get('experience', '')) return { "name": name, "skills": ", ".join(skills[:15]) if skills else "Not Found", # Limit to 15 skills "education": ", ".join(education[:5]) if education else "Not Found", "experience": ", ".join(experience[:5]) if experience else "Not Found" } # Optional: Add confidence scores def parse_resume_with_confidence(file_path: str) -> Dict[str, Tuple[str, float]]: """Parse resume with confidence scores for each field""" result = parse_resume(file_path) # Simple confidence calculation based on whether data was found confidence_scores = { "name": 0.9 if result["name"] != "Not Found" else 0.1, "skills": min(0.9, len(result["skills"].split(",")) * 0.1) if result["skills"] != "Not Found" else 0.1, "education": 0.8 if result["education"] != "Not Found" else 0.2, "experience": 0.8 if result["experience"] != "Not Found" else 0.2 } return { key: (value, confidence_scores[key]) for key, value in result.items() }