husseinelsaadi commited on
Commit
33790e9
·
verified ·
1 Parent(s): 8c1c92b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -44
app.py CHANGED
@@ -1323,50 +1323,6 @@ df = pd.DataFrame(results)
1323
  summary = df.groupby("k")[["precision", "recall", "f1"]].mean().round(3)
1324
  print(summary)
1325
 
1326
- import pandas as pd
1327
- import matplotlib.pyplot as plt
1328
- import seaborn as sns
1329
-
1330
- # Load the dataset
1331
- df = pd.read_csv("/Users/husseinelsaadi/kaggle-local-project/data/retrieval_metrics_table.csv")
1332
-
1333
- # Set plot style
1334
- sns.set(style="whitegrid")
1335
-
1336
- # Plot 1: Precision per Job Role
1337
- plt.figure(figsize=(12, 6))
1338
- sns.barplot(data=df, x="job_role", y="precision")
1339
- plt.title("Precision@K per Job Role")
1340
- plt.xticks(rotation=45, ha="right")
1341
- plt.tight_layout()
1342
- plt.show()
1343
-
1344
- # Plot 2: Recall per Job Role
1345
- plt.figure(figsize=(12, 6))
1346
- sns.barplot(data=df, x="job_role", y="recall")
1347
- plt.title("Recall@K per Job Role")
1348
- plt.xticks(rotation=45, ha="right")
1349
- plt.tight_layout()
1350
- plt.show()
1351
-
1352
- # Plot 3: F1 Score per Job Role
1353
- plt.figure(figsize=(12, 6))
1354
- sns.barplot(data=df, x="job_role", y="f1")
1355
- plt.title("F1@K per Job Role")
1356
- plt.xticks(rotation=45, ha="right")
1357
- plt.tight_layout()
1358
- plt.show()
1359
-
1360
- # Plot 4: Grouped Bar Chart for Precision, Recall, F1
1361
- df_melted = df.melt(id_vars="job_role", value_vars=["precision", "recall", "f1"],
1362
- var_name="Metric", value_name="Score")
1363
- plt.figure(figsize=(14, 6))
1364
- sns.barplot(data=df_melted, x="job_role", y="Score", hue="Metric")
1365
- plt.title("Retrieval Evaluation Metrics per Job Role")
1366
- plt.xticks(rotation=45, ha="right")
1367
- plt.legend(title="Metric")
1368
- plt.tight_layout()
1369
- plt.show()
1370
 
1371
  def extract_job_details(job_description):
1372
  """Extract job details such as title, skills, experience level, and years of experience from the job description."""
 
1323
  summary = df.groupby("k")[["precision", "recall", "f1"]].mean().round(3)
1324
  print(summary)
1325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326
 
1327
  def extract_job_details(job_description):
1328
  """Extract job details such as title, skills, experience level, and years of experience from the job description."""