Add working app.py
Browse files- app.py +1858 -0
- requirements.txt +53 -0
app.py
ADDED
@@ -0,0 +1,1858 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_community.vectorstores import Qdrant
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.chains import LLMChain
|
9 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
10 |
+
from langchain.retrievers.document_compressors import CohereRerank
|
11 |
+
from qdrant_client import QdrantClient
|
12 |
+
import cohere
|
13 |
+
import json
|
14 |
+
import re
|
15 |
+
import time
|
16 |
+
from collections import defaultdict
|
17 |
+
|
18 |
+
|
19 |
+
from qdrant_client.http import models
|
20 |
+
from qdrant_client.models import PointStruct
|
21 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
22 |
+
from sklearn.neighbors import NearestNeighbors
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
25 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
26 |
+
import numpy as np
|
27 |
+
import os
|
28 |
+
from dotenv import load_dotenv
|
29 |
+
from enum import Enum
|
30 |
+
import time
|
31 |
+
from inputimeout import inputimeout, TimeoutOccurred
|
32 |
+
|
33 |
+
|
34 |
+
# Import Qdrant client and models (adjust based on your environment)
|
35 |
+
from qdrant_client import QdrantClient
|
36 |
+
from qdrant_client.http.models import VectorParams, Distance, Filter, FieldCondition, MatchValue
|
37 |
+
from qdrant_client.http.models import PointStruct, Filter, FieldCondition, MatchValue, SearchRequest
|
38 |
+
import traceback
|
39 |
+
from transformers import pipeline
|
40 |
+
|
41 |
+
from textwrap import dedent
|
42 |
+
import json
|
43 |
+
import logging
|
44 |
+
|
45 |
+
from transformers import pipeline
|
46 |
+
|
47 |
+
|
48 |
+
from dotenv import load_dotenv
|
49 |
+
import os
|
50 |
+
|
51 |
+
load_dotenv() # Load from .env file
|
52 |
+
|
53 |
+
cohere_api_key = os.getenv("COHERE_API_KEY")
|
54 |
+
chat_groq_api = os.getenv("GROQ_API_KEY")
|
55 |
+
hf_api_key = os.getenv("HF_API_KEY")
|
56 |
+
qdrant_api = os.getenv("QDRANT_API_KEY")
|
57 |
+
qdrant_url = os.getenv("QDRANT_API_URL")
|
58 |
+
|
59 |
+
print("GROQ API Key:", chat_groq_api)
|
60 |
+
print("QDRANT API Key:", qdrant_api)
|
61 |
+
print("QDRANT API URL:", qdrant_url)
|
62 |
+
print("Cohere API Key:", cohere_api_key)
|
63 |
+
|
64 |
+
from qdrant_client import QdrantClient
|
65 |
+
|
66 |
+
qdrant_client = QdrantClient(
|
67 |
+
url="https://313b1ceb-057f-4b7b-89f5-7b19a213fe65.us-east-1-0.aws.cloud.qdrant.io:6333",
|
68 |
+
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.w13SPZbljbSvt9Ch_0r034QhMFlmEr4ctXqLo2zhxm4",
|
69 |
+
)
|
70 |
+
|
71 |
+
print(qdrant_client.get_collections())
|
72 |
+
|
73 |
+
class ChatGroq:
|
74 |
+
def __init__(self, temperature, model_name, api_key):
|
75 |
+
self.temperature = temperature
|
76 |
+
self.model_name = model_name
|
77 |
+
self.api_key = api_key
|
78 |
+
self.api_url = "https://api.groq.com/openai/v1/chat/completions"
|
79 |
+
|
80 |
+
def predict(self, prompt):
|
81 |
+
"""Send a request to the Groq API and return the generated response."""
|
82 |
+
try:
|
83 |
+
headers = {
|
84 |
+
"Authorization": f"Bearer {self.api_key}",
|
85 |
+
"Content-Type": "application/json"
|
86 |
+
}
|
87 |
+
|
88 |
+
payload = {
|
89 |
+
"model": self.model_name,
|
90 |
+
"messages": [{"role": "system", "content": "You are an AI interviewer."},
|
91 |
+
{"role": "user", "content": prompt}],
|
92 |
+
"temperature": self.temperature,
|
93 |
+
"max_tokens": 150
|
94 |
+
}
|
95 |
+
|
96 |
+
response = requests.post(self.api_url, headers=headers, json=payload, timeout=10)
|
97 |
+
response.raise_for_status() # Raise an error for HTTP codes 4xx/5xx
|
98 |
+
|
99 |
+
data = response.json()
|
100 |
+
|
101 |
+
# Extract response text based on Groq API response format
|
102 |
+
if "choices" in data and len(data["choices"]) > 0:
|
103 |
+
return data["choices"][0]["message"]["content"].strip()
|
104 |
+
|
105 |
+
logging.warning("Unexpected response structure from Groq API")
|
106 |
+
return "Interviewer: Could you tell me more about your relevant experience?"
|
107 |
+
|
108 |
+
except requests.exceptions.RequestException as e:
|
109 |
+
logging.error(f"ChatGroq API error: {e}")
|
110 |
+
return "Interviewer: Due to a system issue, let's move on to another question."
|
111 |
+
groq_llm = ChatGroq(
|
112 |
+
temperature=0.7,
|
113 |
+
model_name="llama-3.3-70b-versatile",
|
114 |
+
api_key=chat_groq_api
|
115 |
+
)
|
116 |
+
|
117 |
+
from transformers import AutoTokenizer
|
118 |
+
#Original Model Name
|
119 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
|
120 |
+
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
122 |
+
|
123 |
+
|
124 |
+
from huggingface_hub import login
|
125 |
+
import os
|
126 |
+
|
127 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
128 |
+
|
129 |
+
if HF_TOKEN:
|
130 |
+
login(HF_TOKEN)
|
131 |
+
else:
|
132 |
+
raise EnvironmentError("Missing HF_TOKEN environment variable.")
|
133 |
+
|
134 |
+
|
135 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
136 |
+
import torch
|
137 |
+
|
138 |
+
MODEL_PATH = "mistralai/Mistral-7B-Instruct-v0.3"
|
139 |
+
|
140 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
141 |
+
|
142 |
+
model = AutoModelForCausalLM.from_pretrained(
|
143 |
+
MODEL_PATH,
|
144 |
+
torch_dtype=torch.bfloat16 if torch.backends.mps.is_available() else torch.float32,
|
145 |
+
device_map="auto"
|
146 |
+
)
|
147 |
+
|
148 |
+
falcon_pipeline = pipeline(
|
149 |
+
"text-generation",
|
150 |
+
model=model,
|
151 |
+
tokenizer=tokenizer,
|
152 |
+
max_new_tokens=128,
|
153 |
+
temperature=0.3,
|
154 |
+
top_p=0.9,
|
155 |
+
do_sample=True,
|
156 |
+
repetition_penalty=1.1,
|
157 |
+
)
|
158 |
+
|
159 |
+
# ✅ Test it
|
160 |
+
# result = falcon_pipeline("Explain LLMs:")
|
161 |
+
# print(result[0]["generated_text"])
|
162 |
+
|
163 |
+
# embedding model
|
164 |
+
from sentence_transformers import SentenceTransformer
|
165 |
+
|
166 |
+
class LocalEmbeddings:
|
167 |
+
def __init__(self, model_name="all-MiniLM-L6-v2"):
|
168 |
+
self.model = SentenceTransformer(model_name)
|
169 |
+
|
170 |
+
def embed_query(self, text):
|
171 |
+
return self.model.encode(text).tolist()
|
172 |
+
|
173 |
+
def embed_documents(self, documents):
|
174 |
+
return self.model.encode(documents).tolist()
|
175 |
+
|
176 |
+
|
177 |
+
embeddings = LocalEmbeddings()
|
178 |
+
|
179 |
+
# import cohere
|
180 |
+
qdrant_client = QdrantClient(url=qdrant_url, api_key=qdrant_api,check_compatibility=False)
|
181 |
+
co = cohere.Client(api_key=cohere_api_key)
|
182 |
+
|
183 |
+
class EvaluationScore(str, Enum):
|
184 |
+
POOR = "Poor"
|
185 |
+
MEDIUM = "Medium"
|
186 |
+
GOOD = "Good"
|
187 |
+
EXCELLENT = "Excellent"
|
188 |
+
|
189 |
+
# Cohere Reranker
|
190 |
+
class CohereReranker:
|
191 |
+
def __init__(self, client):
|
192 |
+
self.client = client
|
193 |
+
|
194 |
+
def compress_documents(self, documents, query):
|
195 |
+
if not documents:
|
196 |
+
return []
|
197 |
+
doc_texts = [doc.page_content for doc in documents]
|
198 |
+
try:
|
199 |
+
reranked = self.client.rerank(
|
200 |
+
query=query,
|
201 |
+
documents=doc_texts,
|
202 |
+
model="rerank-english-v2.0",
|
203 |
+
top_n=5
|
204 |
+
)
|
205 |
+
return [documents[result.index] for result in reranked.results]
|
206 |
+
except Exception as e:
|
207 |
+
logging.error(f"Error in CohereReranker.compress_documents: {e}")
|
208 |
+
return documents[:5]
|
209 |
+
|
210 |
+
reranker = CohereReranker(co)
|
211 |
+
|
212 |
+
def load_data_from_json(file_path):
|
213 |
+
"""Load interview Q&A data from a JSON file."""
|
214 |
+
try:
|
215 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
216 |
+
data = json.load(f)
|
217 |
+
job_role_buckets = defaultdict(list)
|
218 |
+
for idx, item in enumerate(data):
|
219 |
+
try:
|
220 |
+
job_role = item["Job Role"].lower().strip()
|
221 |
+
question = item["Questions"].strip()
|
222 |
+
answer = item["Answers"].strip()
|
223 |
+
job_role_buckets[job_role].append({"question": question, "answer": answer})
|
224 |
+
except KeyError as e:
|
225 |
+
logging.warning(f"Skipping item {idx}: missing key {e}")
|
226 |
+
return job_role_buckets # <--- You missed this!
|
227 |
+
except Exception as e:
|
228 |
+
logging.error(f"Error loading data: {e}")
|
229 |
+
raise
|
230 |
+
|
231 |
+
|
232 |
+
def verify_qdrant_collection(collection_name='interview_questions'):
|
233 |
+
"""Verify if a Qdrant collection exists with the correct configuration."""
|
234 |
+
try:
|
235 |
+
collection_info = qdrant_client.get_collection(collection_name)
|
236 |
+
vector_size = collection_info.config.params.vectors.size
|
237 |
+
logging.info(f"Collection '{collection_name}' exists with vector size: {vector_size}")
|
238 |
+
return True
|
239 |
+
except Exception as e:
|
240 |
+
logging.warning(f"Collection '{collection_name}' not found: {e}")
|
241 |
+
return False
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
def store_data_to_qdrant(data, collection_name='interview_questions', batch_size=100):
|
247 |
+
"""Store interview data in the Qdrant vector database."""
|
248 |
+
try:
|
249 |
+
# Check if collection exists, otherwise create it
|
250 |
+
if not verify_qdrant_collection(collection_name):
|
251 |
+
try:
|
252 |
+
qdrant_client.create_collection(
|
253 |
+
collection_name=collection_name,
|
254 |
+
vectors_config=VectorParams(size=384, distance=Distance.COSINE)
|
255 |
+
)
|
256 |
+
logging.info(f"Created collection '{collection_name}'")
|
257 |
+
except Exception as e:
|
258 |
+
logging.error(f"Error creating collection: {e}\n{traceback.format_exc()}")
|
259 |
+
return False
|
260 |
+
|
261 |
+
points = []
|
262 |
+
point_id = 0
|
263 |
+
total_points = sum(len(qa_list) for qa_list in data.values())
|
264 |
+
processed = 0
|
265 |
+
|
266 |
+
for job_role, qa_list in data.items():
|
267 |
+
for entry in qa_list:
|
268 |
+
try:
|
269 |
+
emb = embeddings.embed_query(entry["question"])
|
270 |
+
print(f"Embedding shape: {len(emb)}")
|
271 |
+
|
272 |
+
if not emb or len(emb) != 384:
|
273 |
+
logging.warning(f"Skipping point {point_id} due to invalid embedding length: {len(emb)}")
|
274 |
+
continue
|
275 |
+
|
276 |
+
points.append(PointStruct(
|
277 |
+
id=point_id,
|
278 |
+
vector=emb,
|
279 |
+
payload={
|
280 |
+
"job_role": job_role,
|
281 |
+
"question": entry["question"],
|
282 |
+
"answer": entry["answer"]
|
283 |
+
}
|
284 |
+
))
|
285 |
+
point_id += 1
|
286 |
+
processed += 1
|
287 |
+
|
288 |
+
# Batch upload
|
289 |
+
if len(points) >= batch_size:
|
290 |
+
try:
|
291 |
+
qdrant_client.upsert(collection_name=collection_name, points=points)
|
292 |
+
logging.info(f"Stored {processed}/{total_points} points ({processed/total_points*100:.1f}%)")
|
293 |
+
except Exception as upsert_err:
|
294 |
+
logging.error(f"Error during upsert: {upsert_err}\n{traceback.format_exc()}")
|
295 |
+
points = []
|
296 |
+
|
297 |
+
except Exception as embed_err:
|
298 |
+
logging.error(f"Embedding error for point {point_id}: {embed_err}\n{traceback.format_exc()}")
|
299 |
+
|
300 |
+
# Final batch upload
|
301 |
+
if points:
|
302 |
+
try:
|
303 |
+
qdrant_client.upsert(collection_name=collection_name, points=points)
|
304 |
+
logging.info(f"Stored final batch of {len(points)} points")
|
305 |
+
except Exception as final_upsert_err:
|
306 |
+
logging.error(f"Error during final upsert: {final_upsert_err}\n{traceback.format_exc()}")
|
307 |
+
|
308 |
+
# Final verification
|
309 |
+
try:
|
310 |
+
count = qdrant_client.count(collection_name=collection_name, exact=True).count
|
311 |
+
print("Current count:", count)
|
312 |
+
logging.info(f"✅ Successfully stored {count} points in Qdrant")
|
313 |
+
if count != total_points:
|
314 |
+
logging.warning(f"Expected {total_points} points but stored {count}")
|
315 |
+
except Exception as count_err:
|
316 |
+
logging.error(f"Error verifying stored points: {count_err}\n{traceback.format_exc()}")
|
317 |
+
|
318 |
+
return True
|
319 |
+
|
320 |
+
except Exception as e:
|
321 |
+
logging.error(f"Error storing data to Qdrant: {e}\n{traceback.format_exc()}")
|
322 |
+
return False
|
323 |
+
|
324 |
+
# to ensure cosine similarity use
|
325 |
+
info = qdrant_client.get_collection("interview_questions")
|
326 |
+
print(info.config.params.vectors.distance)
|
327 |
+
|
328 |
+
def extract_all_roles_from_qdrant(collection_name='interview_questions'):
|
329 |
+
""" Extract all unique job roles from the Qdrant vector store """
|
330 |
+
try:
|
331 |
+
all_roles = set()
|
332 |
+
scroll_offset = None
|
333 |
+
|
334 |
+
while True:
|
335 |
+
response = qdrant_client.scroll(
|
336 |
+
collection_name=collection_name,
|
337 |
+
limit=200,
|
338 |
+
offset=scroll_offset,
|
339 |
+
with_payload=True
|
340 |
+
)
|
341 |
+
points, next_page_offset = response
|
342 |
+
|
343 |
+
if not points:
|
344 |
+
break
|
345 |
+
|
346 |
+
for point in points:
|
347 |
+
role = point.payload.get("job_role", "").strip().lower()
|
348 |
+
if role:
|
349 |
+
all_roles.add(role)
|
350 |
+
|
351 |
+
if not next_page_offset:
|
352 |
+
break
|
353 |
+
|
354 |
+
scroll_offset = next_page_offset
|
355 |
+
|
356 |
+
if not all_roles:
|
357 |
+
logging.warning("[Qdrant] No roles found in payloads.")
|
358 |
+
else:
|
359 |
+
logging.info(f"[Qdrant] Extracted {len(all_roles)} unique job roles.")
|
360 |
+
|
361 |
+
return list(all_roles)
|
362 |
+
except Exception as e:
|
363 |
+
logging.error(f"Error extracting roles from Qdrant: {e}")
|
364 |
+
return []
|
365 |
+
|
366 |
+
import numpy as np
|
367 |
+
import logging
|
368 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
369 |
+
|
370 |
+
def find_similar_roles(user_role, all_roles, top_k=3):
|
371 |
+
"""
|
372 |
+
Find the most similar job roles to the given user_role using embeddings.
|
373 |
+
"""
|
374 |
+
try:
|
375 |
+
# Clean inputs
|
376 |
+
user_role = user_role.strip().lower()
|
377 |
+
if not user_role or not all_roles or not isinstance(all_roles, list):
|
378 |
+
logging.warning("Invalid input for role similarity")
|
379 |
+
return []
|
380 |
+
|
381 |
+
# Embed user role
|
382 |
+
try:
|
383 |
+
user_embedding = embeddings.embed_query(user_role)
|
384 |
+
if user_embedding is None:
|
385 |
+
logging.error("User embedding is None")
|
386 |
+
return []
|
387 |
+
except Exception as e:
|
388 |
+
logging.error(f"Error embedding user role: {type(e).__name__}: {e}")
|
389 |
+
return []
|
390 |
+
|
391 |
+
# Embed all roles
|
392 |
+
try:
|
393 |
+
role_embeddings = []
|
394 |
+
valid_roles = []
|
395 |
+
for role in all_roles:
|
396 |
+
emb = embeddings.embed_query(role.lower())
|
397 |
+
if emb is not None:
|
398 |
+
role_embeddings.append(emb)
|
399 |
+
valid_roles.append(role)
|
400 |
+
else:
|
401 |
+
logging.warning(f"Skipping role with no embedding: {role}")
|
402 |
+
except Exception as e:
|
403 |
+
logging.error(f"Error embedding all roles: {type(e).__name__}: {e}")
|
404 |
+
return []
|
405 |
+
|
406 |
+
if not role_embeddings:
|
407 |
+
logging.error("All role embeddings failed")
|
408 |
+
return []
|
409 |
+
|
410 |
+
# Compute similarities
|
411 |
+
similarities = cosine_similarity([user_embedding], role_embeddings)[0]
|
412 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
413 |
+
|
414 |
+
similar_roles = [valid_roles[i] for i in top_indices]
|
415 |
+
logging.debug(f"Similar roles to '{user_role}': {similar_roles}")
|
416 |
+
return similar_roles
|
417 |
+
|
418 |
+
except Exception as e:
|
419 |
+
logging.error(f"Error finding similar roles: {type(e).__name__}: {e}", exc_info=True)
|
420 |
+
return []
|
421 |
+
|
422 |
+
# RETREIVE ALL DATA RELATED TO THE JOB ROLE NOT JUST TOP_K
|
423 |
+
def get_role_questions(job_role):
|
424 |
+
try:
|
425 |
+
if not job_role:
|
426 |
+
logging.warning("Job role is empty.")
|
427 |
+
return []
|
428 |
+
|
429 |
+
filter_by_role = Filter(
|
430 |
+
must=[FieldCondition(
|
431 |
+
key="job_role",
|
432 |
+
match=MatchValue(value=job_role.lower())
|
433 |
+
)]
|
434 |
+
)
|
435 |
+
|
436 |
+
all_results = []
|
437 |
+
offset = None
|
438 |
+
while True:
|
439 |
+
results, next_page_offset = qdrant_client.scroll(
|
440 |
+
collection_name="interview_questions",
|
441 |
+
scroll_filter=filter_by_role,
|
442 |
+
with_payload=True,
|
443 |
+
with_vectors=False,
|
444 |
+
limit=100, # batch size
|
445 |
+
offset=offset
|
446 |
+
)
|
447 |
+
all_results.extend(results)
|
448 |
+
|
449 |
+
if not next_page_offset:
|
450 |
+
break
|
451 |
+
offset = next_page_offset
|
452 |
+
|
453 |
+
parsed_results = [{
|
454 |
+
"question": r.payload.get("question"),
|
455 |
+
"answer": r.payload.get("answer"),
|
456 |
+
"job_role": r.payload.get("job_role")
|
457 |
+
} for r in all_results]
|
458 |
+
|
459 |
+
return parsed_results
|
460 |
+
|
461 |
+
except Exception as e:
|
462 |
+
logging.error(f"Error fetching role questions: {type(e).__name__}: {e}", exc_info=True)
|
463 |
+
return []
|
464 |
+
|
465 |
+
def retrieve_interview_data(job_role, all_roles):
|
466 |
+
"""
|
467 |
+
Retrieve all interview Q&A for a given job role.
|
468 |
+
Falls back to similar roles if no data found.
|
469 |
+
|
470 |
+
Args:
|
471 |
+
job_role (str): Input job role (can be misspelled)
|
472 |
+
all_roles (list): Full list of available job roles
|
473 |
+
|
474 |
+
Returns:
|
475 |
+
list: List of QA dicts with keys: 'question', 'answer', 'job_role'
|
476 |
+
"""
|
477 |
+
import logging
|
478 |
+
logging.basicConfig(level=logging.INFO)
|
479 |
+
|
480 |
+
job_role = job_role.strip().lower()
|
481 |
+
seen_questions = set()
|
482 |
+
final_results = []
|
483 |
+
|
484 |
+
# Step 1: Try exact match (fetch all questions for role)
|
485 |
+
logging.info(f"Trying to fetch all data for exact role: '{job_role}'")
|
486 |
+
exact_matches = get_role_questions(job_role)
|
487 |
+
|
488 |
+
for qa in exact_matches:
|
489 |
+
question = qa["question"]
|
490 |
+
if question and question not in seen_questions:
|
491 |
+
seen_questions.add(question)
|
492 |
+
final_results.append(qa)
|
493 |
+
|
494 |
+
if final_results:
|
495 |
+
logging.info(f"Found {len(final_results)} QA pairs for exact role '{job_role}'")
|
496 |
+
return final_results
|
497 |
+
|
498 |
+
logging.warning(f"No data found for role '{job_role}'. Trying similar roles...")
|
499 |
+
|
500 |
+
# Step 2: No matches — find similar roles
|
501 |
+
similar_roles = find_similar_roles(job_role, all_roles, top_k=3)
|
502 |
+
|
503 |
+
if not similar_roles:
|
504 |
+
logging.warning("No similar roles found.")
|
505 |
+
return []
|
506 |
+
|
507 |
+
logging.info(f"Found similar roles: {similar_roles}")
|
508 |
+
|
509 |
+
# Step 3: Retrieve data for each similar role (all questions)
|
510 |
+
for role in similar_roles:
|
511 |
+
logging.info(f"Fetching data for similar role: '{role}'")
|
512 |
+
role_qa = get_role_questions(role)
|
513 |
+
|
514 |
+
for qa in role_qa:
|
515 |
+
question = qa["question"]
|
516 |
+
if question and question not in seen_questions:
|
517 |
+
seen_questions.add(question)
|
518 |
+
final_results.append(qa)
|
519 |
+
|
520 |
+
logging.info(f"Retrieved total {len(final_results)} QA pairs from similar roles")
|
521 |
+
return final_results
|
522 |
+
|
523 |
+
import random
|
524 |
+
|
525 |
+
def random_context_chunks(retrieved_data, k=3):
|
526 |
+
chunks = random.sample(retrieved_data, k)
|
527 |
+
return "\n\n".join([f"Q: {item['question']}\nA: {item['answer']}" for item in chunks])
|
528 |
+
|
529 |
+
import json
|
530 |
+
import logging
|
531 |
+
import re
|
532 |
+
from typing import Dict
|
533 |
+
|
534 |
+
def eval_question_quality(
|
535 |
+
question: str,
|
536 |
+
job_role: str,
|
537 |
+
seniority: str,
|
538 |
+
judge_pipeline=None,
|
539 |
+
max_retries=1 # Allow at least 1 retry on parse fail
|
540 |
+
) -> Dict[str, str]:
|
541 |
+
import time
|
542 |
+
try:
|
543 |
+
# Use provided pipeline or fall back to global
|
544 |
+
if judge_pipeline is None:
|
545 |
+
judge_pipeline = globals().get("judge_pipeline")
|
546 |
+
|
547 |
+
if not judge_pipeline:
|
548 |
+
return {
|
549 |
+
"Score": "Error",
|
550 |
+
"Reasoning": "Judge pipeline not available",
|
551 |
+
"Improvements": "Please provide a valid language model pipeline"
|
552 |
+
}
|
553 |
+
|
554 |
+
prompt = f"""
|
555 |
+
... (same as your prompt) ...
|
556 |
+
Now evaluate this question:
|
557 |
+
\"{question}\"
|
558 |
+
"""
|
559 |
+
|
560 |
+
for attempt in range(max_retries + 1):
|
561 |
+
response = judge_pipeline(
|
562 |
+
prompt,
|
563 |
+
max_new_tokens=512,
|
564 |
+
do_sample=False,
|
565 |
+
temperature=0.1,
|
566 |
+
repetition_penalty=1.2
|
567 |
+
)[0]["generated_text"]
|
568 |
+
|
569 |
+
try:
|
570 |
+
# Fallback to last {...} block
|
571 |
+
match = re.search(r'\{.*\}', response, re.DOTALL)
|
572 |
+
if not match:
|
573 |
+
raise ValueError("Could not locate JSON structure in model output.")
|
574 |
+
json_str = match.group(0)
|
575 |
+
result = json.loads(json_str)
|
576 |
+
|
577 |
+
# Validate required fields and values
|
578 |
+
required_keys = ["Score", "Reasoning", "Improvements"]
|
579 |
+
valid_scores = {"Poor", "Medium", "Good", "Excellent"}
|
580 |
+
if not all(k in result for k in required_keys):
|
581 |
+
raise ValueError("Missing required fields.")
|
582 |
+
if result["Score"] not in valid_scores:
|
583 |
+
raise ValueError("Invalid score value.")
|
584 |
+
return result
|
585 |
+
|
586 |
+
except Exception as e:
|
587 |
+
logging.warning(f"Attempt {attempt+1} JSON parsing failed: {e}")
|
588 |
+
time.sleep(0.2) # Small delay before retry
|
589 |
+
|
590 |
+
# If all attempts fail, return a default valid dict
|
591 |
+
return {
|
592 |
+
"Score": "Poor",
|
593 |
+
"Reasoning": "The evaluation model failed to produce a valid score, so defaulted to 'Poor'. Check model output and prompt formatting.",
|
594 |
+
"Improvements": [
|
595 |
+
"Ensure the question is clear and role-relevant.",
|
596 |
+
"Double-check prompt and formatting.",
|
597 |
+
"Try rephrasing the question to match rubric."
|
598 |
+
]
|
599 |
+
}
|
600 |
+
|
601 |
+
except Exception as e:
|
602 |
+
logging.error(f"Error in eval_question_quality: {type(e)._name_}: {e}", exc_info=True)
|
603 |
+
return {
|
604 |
+
"Score": "Poor",
|
605 |
+
"Reasoning": f"Critical error occurred: {str(e)}. Defaulted to 'Poor'.",
|
606 |
+
"Improvements": [
|
607 |
+
"Retry with a different question.",
|
608 |
+
"Check your judge pipeline connection.",
|
609 |
+
"Contact support if this persists."
|
610 |
+
]
|
611 |
+
}
|
612 |
+
|
613 |
+
def evaluate_answer(
|
614 |
+
question: str,
|
615 |
+
answer: str,
|
616 |
+
ref_answer: str,
|
617 |
+
job_role: str,
|
618 |
+
seniority: str,
|
619 |
+
judge_pipeline=None,
|
620 |
+
max_retries=1
|
621 |
+
) -> Dict[str, str]:
|
622 |
+
"""
|
623 |
+
Evaluates a candidate's answer to an interview question and returns a structured judgment.
|
624 |
+
Guarantees a valid, actionable result even if the model fails.
|
625 |
+
"""
|
626 |
+
|
627 |
+
import time
|
628 |
+
try:
|
629 |
+
if judge_pipeline is None:
|
630 |
+
judge_pipeline = globals().get("judge_pipeline")
|
631 |
+
|
632 |
+
if not judge_pipeline:
|
633 |
+
return {
|
634 |
+
"Score": "Error",
|
635 |
+
"Reasoning": "Judge pipeline not available",
|
636 |
+
"Improvements": [
|
637 |
+
"Please provide a valid language model pipeline"
|
638 |
+
]
|
639 |
+
}
|
640 |
+
|
641 |
+
# Enhanced prompt (your version)
|
642 |
+
prompt = f"""
|
643 |
+
You are an expert technical interviewer evaluating a candidate's response for a {job_role} position at the {seniority} level.
|
644 |
+
|
645 |
+
You are provided with:
|
646 |
+
- The question asked
|
647 |
+
- The candidate's response
|
648 |
+
- A reference answer that represents a high-quality expected answer
|
649 |
+
|
650 |
+
Evaluate the candidate's response based on:
|
651 |
+
- Technical correctness
|
652 |
+
- Clarity and depth of explanation
|
653 |
+
- Relevance to the job role and seniority
|
654 |
+
- Completeness and structure
|
655 |
+
|
656 |
+
Be objective, concise, and use professional language. Be fair but critical.
|
657 |
+
|
658 |
+
--------------------------
|
659 |
+
Question:
|
660 |
+
{question}
|
661 |
+
|
662 |
+
Candidate Answer:
|
663 |
+
{answer}
|
664 |
+
|
665 |
+
Reference Answer:
|
666 |
+
{ref_answer}
|
667 |
+
--------------------------
|
668 |
+
|
669 |
+
Now return your evaluation as a valid JSON object using exactly these keys:
|
670 |
+
- "Score": One of ["Poor", "Medium", "Good", "Excellent"]
|
671 |
+
- "Reasoning": 2-3 sentence explanation justifying the score, covering clarity, accuracy, completeness, or relevance
|
672 |
+
- "Improvements": A list of 2-3 specific and constructive suggestions to help the candidate improve this answer
|
673 |
+
|
674 |
+
Example:
|
675 |
+
{{
|
676 |
+
"Score": "Good",
|
677 |
+
"Reasoning": "The answer demonstrates a good understanding of the concept and touches on key ideas, but lacks depth in explaining the trade-offs between techniques.",
|
678 |
+
"Improvements": [
|
679 |
+
"Explain when this method might fail or produce biased results",
|
680 |
+
"Include examples or metrics to support the explanation",
|
681 |
+
"Clarify the specific business impact or outcome achieved"
|
682 |
+
]
|
683 |
+
}}
|
684 |
+
|
685 |
+
Respond only with the JSON:
|
686 |
+
"""
|
687 |
+
for attempt in range(max_retries + 1):
|
688 |
+
output = judge_pipeline(
|
689 |
+
prompt,
|
690 |
+
max_new_tokens=512,
|
691 |
+
temperature=0.3,
|
692 |
+
do_sample=False
|
693 |
+
)[0]["generated_text"]
|
694 |
+
|
695 |
+
# Try to extract JSON response from output robustly
|
696 |
+
try:
|
697 |
+
start_idx = output.rfind("{")
|
698 |
+
end_idx = output.rfind("}") + 1
|
699 |
+
|
700 |
+
if start_idx != -1 and end_idx != -1 and end_idx > start_idx:
|
701 |
+
json_str = output[start_idx:end_idx]
|
702 |
+
result = json.loads(json_str)
|
703 |
+
valid_scores = {"Poor", "Medium", "Good", "Excellent"}
|
704 |
+
if result.get("Score") in valid_scores:
|
705 |
+
return {
|
706 |
+
"Score": result["Score"],
|
707 |
+
"Reasoning": result.get("Reasoning", "No explanation provided."),
|
708 |
+
"Improvements": result.get("Improvements", ["No improvement suggestions provided."])
|
709 |
+
}
|
710 |
+
else:
|
711 |
+
raise ValueError(f"Invalid Score value: {result.get('Score')}")
|
712 |
+
else:
|
713 |
+
raise ValueError("JSON format not found in output")
|
714 |
+
except Exception as e:
|
715 |
+
logging.warning(f"evaluate_answer: Attempt {attempt+1} failed to parse model output: {e}")
|
716 |
+
time.sleep(0.2) # Small wait before retry
|
717 |
+
|
718 |
+
# Fallback: always return a default 'Poor' score if all attempts fail
|
719 |
+
return {
|
720 |
+
"Score": "Poor",
|
721 |
+
"Reasoning": "The evaluation model failed to produce a valid score or parse output; defaulted to 'Poor'. Please check model output and prompt formatting.",
|
722 |
+
"Improvements": [
|
723 |
+
"Be more specific and detailed in the answer.",
|
724 |
+
"Structure your response with clear points.",
|
725 |
+
"Relate your answer more closely to the job role and question."
|
726 |
+
]
|
727 |
+
}
|
728 |
+
except Exception as e:
|
729 |
+
logging.error(f"Evaluation failed: {e}", exc_info=True)
|
730 |
+
return {
|
731 |
+
"Score": "Poor",
|
732 |
+
"Reasoning": f"Critical error occurred: {str(e)}. Defaulted to 'Poor'.",
|
733 |
+
"Improvements": [
|
734 |
+
"Try again with a different answer.",
|
735 |
+
"Check your judge pipeline connection.",
|
736 |
+
"Contact support if the error persists."
|
737 |
+
]
|
738 |
+
}
|
739 |
+
|
740 |
+
# SAME BUT USING LLAMA 3.3 FROM GROQ
|
741 |
+
def generate_reference_answer(question, job_role, seniority):
|
742 |
+
"""
|
743 |
+
Generates a high-quality reference answer using Groq-hosted LLaMA model.
|
744 |
+
|
745 |
+
Args:
|
746 |
+
question (str): Interview question to answer.
|
747 |
+
job_role (str): Target job role (e.g., "Frontend Developer").
|
748 |
+
seniority (str): Experience level (e.g., "Mid-Level").
|
749 |
+
|
750 |
+
Returns:
|
751 |
+
str: Clean, generated reference answer or error message.
|
752 |
+
"""
|
753 |
+
try:
|
754 |
+
# Clean, role-specific prompt
|
755 |
+
prompt = f"""You are a {seniority} {job_role}.
|
756 |
+
|
757 |
+
Q: {question}
|
758 |
+
A:"""
|
759 |
+
|
760 |
+
# Use Groq-hosted model to generate the answer
|
761 |
+
ref_answer = groq_llm.predict(prompt)
|
762 |
+
|
763 |
+
if not ref_answer.strip():
|
764 |
+
return "Reference answer not generated."
|
765 |
+
|
766 |
+
return ref_answer.strip()
|
767 |
+
|
768 |
+
except Exception as e:
|
769 |
+
logging.error(f"Error generating reference answer: {e}", exc_info=True)
|
770 |
+
return "Unable to generate reference answer due to an error"
|
771 |
+
|
772 |
+
def interpret_confidence(voice_label, face_label, answer_score_label,k=0.2):
|
773 |
+
# Map expressions to rough numerical confidence levels
|
774 |
+
emotion_map = {
|
775 |
+
"happy": 0.9, "neutral": 0.6, "surprised": 0.7, "sad": 0.4,
|
776 |
+
"angry": 0.3, "disgust": 0.2, "fear": 0.3,
|
777 |
+
}
|
778 |
+
|
779 |
+
answer_score_map = {
|
780 |
+
"excellent": 1.0,
|
781 |
+
"good": 0.8,
|
782 |
+
"medium": 0.6,
|
783 |
+
"poor": 0.3
|
784 |
+
}
|
785 |
+
|
786 |
+
voice_score = emotion_map.get(voice_label, 0.5)
|
787 |
+
face_score = emotion_map.get(face_label, 0.5)
|
788 |
+
answer_score = answer_score_map.get(answer_score_label, 0.5)
|
789 |
+
|
790 |
+
# Adjust weights as needed (emotions may be less reliable than verbal answers)
|
791 |
+
avg_emotion = (voice_score + face_score) /2
|
792 |
+
control_bonus = max(0,answer_score - avg_emotion) *k
|
793 |
+
effective_confidence = (
|
794 |
+
0.5 * answer_score +
|
795 |
+
0.22 * voice_score +
|
796 |
+
0.18 * face_score +
|
797 |
+
0.1 *control_bonus
|
798 |
+
)
|
799 |
+
|
800 |
+
return {
|
801 |
+
"effective_confidence": round(effective_confidence, 3),
|
802 |
+
"answer_score": round(answer_score, 2),
|
803 |
+
"voice_score": round(voice_score, 2),
|
804 |
+
"face_score": round(face_score, 2),
|
805 |
+
"control_bonus": round(control_bonus, 3)
|
806 |
+
}
|
807 |
+
|
808 |
+
def build_interview_prompt(conversation_history, user_response, context, job_role, skills, seniority,
|
809 |
+
difficulty_adjustment=None, voice_label=None, face_label=None, effective_confidence=None):
|
810 |
+
"""Build a prompt for generating the next interview question with adaptive difficulty and fairness logic."""
|
811 |
+
|
812 |
+
interview_template = """
|
813 |
+
You are an AI interviewer conducting a real-time interview for a {job_role} position.
|
814 |
+
|
815 |
+
Your objective is to thoroughly evaluate the candidate's suitability for the role using smart, structured, and adaptive questioning.
|
816 |
+
|
817 |
+
---
|
818 |
+
|
819 |
+
Interview Rules and Principles:
|
820 |
+
- The **baseline difficulty** of questions must match the candidate’s seniority level (e.g., junior, mid-level, senior).
|
821 |
+
- Use your judgment to increase difficulty **slightly** if the candidate performs well, or simplify if they struggle — but never drop below the expected baseline for their level.
|
822 |
+
- Avoid asking extremely difficult questions to junior candidates unless they’ve clearly demonstrated advanced knowledge.
|
823 |
+
- Be fair: candidates for the same role should be evaluated within a consistent difficulty range.
|
824 |
+
- Adapt your line of questioning gradually and logically based on the **overall flow**, not just the last answer.
|
825 |
+
- Include real-world problem-solving scenarios to test how the candidate thinks and behaves practically.
|
826 |
+
- You must **lead** the interview and make intelligent decisions about what to ask next.
|
827 |
+
|
828 |
+
---
|
829 |
+
|
830 |
+
Context Use:
|
831 |
+
{context_instruction}
|
832 |
+
Note:
|
833 |
+
If no relevant context was retrieved or the previous answer is unclear, you must still generate a thoughtful interview question using your own knowledge. Do not skip generation. Avoid default or fallback responses — always try to generate a meaningful and fair next question.
|
834 |
+
|
835 |
+
|
836 |
+
---
|
837 |
+
|
838 |
+
Job Role: {job_role}
|
839 |
+
Seniority Level: {seniority}
|
840 |
+
Skills Focus: {skills}
|
841 |
+
Difficulty Setting: {difficulty} (based on {difficulty_adjustment})
|
842 |
+
|
843 |
+
---
|
844 |
+
|
845 |
+
Recent Conversation History:
|
846 |
+
{history}
|
847 |
+
|
848 |
+
Candidate's Last Response:
|
849 |
+
"{user_response}"
|
850 |
+
|
851 |
+
Evaluation of Last Response:
|
852 |
+
{response_evaluation}
|
853 |
+
|
854 |
+
Voice Tone: {voice_label}
|
855 |
+
Facial Expression: {face_label}
|
856 |
+
Estimated Confidence Score: {effective_confidence}
|
857 |
+
|
858 |
+
---
|
859 |
+
---
|
860 |
+
|
861 |
+
Important:
|
862 |
+
If no relevant context was retrieved or the previous answer is unclear or off-topic,
|
863 |
+
you must still generate a meaningful and fair interview question using your own knowledge and best practices.
|
864 |
+
Do not skip question generation or fall back to default/filler responses.
|
865 |
+
|
866 |
+
---
|
867 |
+
|
868 |
+
Guidelines for Next Question:
|
869 |
+
- If this is the beginning of the interview, start with a question about the candidate’s background or experience.
|
870 |
+
- Base the difficulty primarily on the seniority level, with light adjustment from recent performance.
|
871 |
+
- Focus on core skills, real-world applications, and depth of reasoning.
|
872 |
+
- Ask only one question. Be clear and concise.
|
873 |
+
|
874 |
+
Generate the next interview question now:
|
875 |
+
"""
|
876 |
+
|
877 |
+
# Calculate difficulty phrase
|
878 |
+
if difficulty_adjustment == "harder":
|
879 |
+
difficulty = f"slightly more challenging than typical for {seniority}"
|
880 |
+
elif difficulty_adjustment == "easier":
|
881 |
+
difficulty = f"slightly easier than typical for {seniority}"
|
882 |
+
else:
|
883 |
+
difficulty = f"appropriate for {seniority}"
|
884 |
+
|
885 |
+
# Choose context logic
|
886 |
+
if context.strip():
|
887 |
+
context_instruction = (
|
888 |
+
"Use both your own expertise and the provided context from relevant interview datasets. "
|
889 |
+
"You can either build on questions from the dataset or generate your own."
|
890 |
+
)
|
891 |
+
context = context.strip()
|
892 |
+
else:
|
893 |
+
context_instruction = (
|
894 |
+
"No specific context retrieved. Use your own knowledge and best practices to craft a question."
|
895 |
+
)
|
896 |
+
context = "" # Let it be actually empty!
|
897 |
+
|
898 |
+
|
899 |
+
# Format conversation history (last 6 exchanges max)
|
900 |
+
recent_history = conversation_history[-6:] if len(conversation_history) > 6 else conversation_history
|
901 |
+
formatted_history = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in recent_history])
|
902 |
+
|
903 |
+
# Add evaluation summary if available
|
904 |
+
|
905 |
+
if conversation_history and conversation_history[-1].get("evaluation"):
|
906 |
+
eval_data = conversation_history[-1]["evaluation"][-1]
|
907 |
+
response_evaluation = f"""
|
908 |
+
- Score: {eval_data.get('Score', 'N/A')}
|
909 |
+
- Reasoning: {eval_data.get('Reasoning', 'N/A')}
|
910 |
+
- Improvements: {eval_data.get('Improvements', 'N/A')}
|
911 |
+
"""
|
912 |
+
else:
|
913 |
+
response_evaluation = "No evaluation available yet."
|
914 |
+
|
915 |
+
|
916 |
+
# Fill the template
|
917 |
+
prompt = interview_template.format(
|
918 |
+
job_role=job_role,
|
919 |
+
seniority=seniority,
|
920 |
+
skills=skills,
|
921 |
+
difficulty=difficulty,
|
922 |
+
difficulty_adjustment=difficulty_adjustment if difficulty_adjustment else "default seniority",
|
923 |
+
context_instruction=context_instruction,
|
924 |
+
context=context,
|
925 |
+
history=formatted_history,
|
926 |
+
user_response=user_response,
|
927 |
+
response_evaluation=response_evaluation.strip(),
|
928 |
+
voice_label=voice_label or "unknown",
|
929 |
+
face_label=face_label or "unknown",
|
930 |
+
effective_confidence=effective_confidence if effective_confidence is not None else "N/A"
|
931 |
+
)
|
932 |
+
|
933 |
+
return prompt
|
934 |
+
|
935 |
+
|
936 |
+
def generate_llm_interview_report(
|
937 |
+
interview_state, logged_samples, job_role, seniority
|
938 |
+
):
|
939 |
+
from collections import Counter
|
940 |
+
|
941 |
+
# Helper for converting score to 1–5
|
942 |
+
def score_label(label):
|
943 |
+
mapping = {
|
944 |
+
"confident": 5, "calm": 4, "neutral": 3, "nervous": 2, "anxious": 1, "unknown": 3
|
945 |
+
}
|
946 |
+
return mapping.get(label.lower(), 3)
|
947 |
+
|
948 |
+
def section_score(vals):
|
949 |
+
return round(sum(vals)/len(vals), 2) if vals else "N/A"
|
950 |
+
|
951 |
+
# Aggregate info
|
952 |
+
scores, voice_conf, face_conf, comm_scores = [], [], [], []
|
953 |
+
tech_details, comm_details, emotion_details, relevance_details, problem_details = [], [], [], [], []
|
954 |
+
|
955 |
+
for entry in logged_samples:
|
956 |
+
answer_eval = entry.get("answer_evaluation", {})
|
957 |
+
score = answer_eval.get("Score", "Not Evaluated")
|
958 |
+
reasoning = answer_eval.get("Reasoning", "")
|
959 |
+
if score.lower() in ["excellent", "good", "medium", "poor"]:
|
960 |
+
score_map = {"excellent": 5, "good": 4, "medium": 3, "poor": 2}
|
961 |
+
scores.append(score_map[score.lower()])
|
962 |
+
# Section details
|
963 |
+
tech_details.append(reasoning)
|
964 |
+
comm_details.append(reasoning)
|
965 |
+
# Emotions/confidence
|
966 |
+
voice_conf.append(score_label(entry.get("voice_label", "unknown")))
|
967 |
+
face_conf.append(score_label(entry.get("face_label", "unknown")))
|
968 |
+
# Communication estimate
|
969 |
+
if entry["user_answer"]:
|
970 |
+
length = len(entry["user_answer"].split())
|
971 |
+
comm_score = min(5, max(2, length // 30))
|
972 |
+
comm_scores.append(comm_score)
|
973 |
+
|
974 |
+
# Compute averages for sections
|
975 |
+
avg_problem = section_score(scores)
|
976 |
+
avg_tech = section_score(scores)
|
977 |
+
avg_comm = section_score(comm_scores)
|
978 |
+
avg_emotion = section_score([(v+f)/2 for v, f in zip(voice_conf, face_conf)])
|
979 |
+
|
980 |
+
# Compute decision heuristics
|
981 |
+
section_averages = [avg_problem, avg_tech, avg_comm, avg_emotion]
|
982 |
+
numeric_avgs = [v for v in section_averages if isinstance(v, (float, int))]
|
983 |
+
avg_overall = round(sum(numeric_avgs) / len(numeric_avgs), 2) if numeric_avgs else 0
|
984 |
+
|
985 |
+
# Hiring logic (you can customize thresholds)
|
986 |
+
if avg_overall >= 4.5:
|
987 |
+
verdict = "Strong Hire"
|
988 |
+
elif avg_overall >= 4.0:
|
989 |
+
verdict = "Hire"
|
990 |
+
elif avg_overall >= 3.0:
|
991 |
+
verdict = "Conditional Hire"
|
992 |
+
else:
|
993 |
+
verdict = "No Hire"
|
994 |
+
|
995 |
+
# Build LLM report prompt
|
996 |
+
transcript = "\n\n".join([
|
997 |
+
f"Q: {e['generated_question']}\nA: {e['user_answer']}\nScore: {e.get('answer_evaluation',{}).get('Score','')}\nReasoning: {e.get('answer_evaluation',{}).get('Reasoning','')}"
|
998 |
+
for e in logged_samples
|
999 |
+
])
|
1000 |
+
|
1001 |
+
prompt = f"""
|
1002 |
+
You are a senior technical interviewer at a major tech company.
|
1003 |
+
|
1004 |
+
Write a structured, realistic hiring report for this {seniority} {job_role} interview, using these section scores (scale 1–5, with 5 best):
|
1005 |
+
|
1006 |
+
Section-wise Evaluation
|
1007 |
+
1. *Problem Solving & Critical Thinking*: {avg_problem}
|
1008 |
+
2. *Technical Depth & Knowledge*: {avg_tech}
|
1009 |
+
3. *Communication & Clarity*: {avg_comm}
|
1010 |
+
4. *Emotional Composure & Confidence*: {avg_emotion}
|
1011 |
+
5. *Role Relevance*: 5
|
1012 |
+
|
1013 |
+
*Transcript*
|
1014 |
+
{transcript}
|
1015 |
+
|
1016 |
+
Your report should have the following sections:
|
1017 |
+
|
1018 |
+
1. *Executive Summary* (realistic, hiring-committee style)
|
1019 |
+
2. *Section-wise Comments* (for each numbered category above, with short paragraph citing specifics)
|
1020 |
+
3. *Strengths & Weaknesses* (list at least 2 for each)
|
1021 |
+
4. *Final Verdict*: {verdict}
|
1022 |
+
5. *Recommendations* (2–3 for future improvement)
|
1023 |
+
|
1024 |
+
Use realistic language. If some sections are N/A or lower than others, comment honestly.
|
1025 |
+
|
1026 |
+
Interview Report:
|
1027 |
+
"""
|
1028 |
+
# LLM call, or just return prompt for review
|
1029 |
+
return groq_llm.predict(prompt)
|
1030 |
+
|
1031 |
+
def get_user_info():
|
1032 |
+
"""
|
1033 |
+
Collects essential information from the candidate before starting the interview.
|
1034 |
+
Returns a dictionary with keys: name, job_role, seniority, skills
|
1035 |
+
"""
|
1036 |
+
import logging
|
1037 |
+
logging.info("Collecting user information...")
|
1038 |
+
|
1039 |
+
print("Welcome to the AI Interview Simulator!")
|
1040 |
+
print("Let’s set up your mock interview.\n")
|
1041 |
+
|
1042 |
+
# Get user name
|
1043 |
+
name = input("What is your name? ").strip()
|
1044 |
+
while not name:
|
1045 |
+
print("Please enter your name.")
|
1046 |
+
name = input("What is your name? ").strip()
|
1047 |
+
|
1048 |
+
# Get job role
|
1049 |
+
job_role = input(f"Hi {name}, what job role are you preparing for? (e.g. Frontend Developer) ").strip()
|
1050 |
+
while not job_role:
|
1051 |
+
print("Please specify the job role.")
|
1052 |
+
job_role = input("What job role are you preparing for? ").strip()
|
1053 |
+
|
1054 |
+
# Get seniority level
|
1055 |
+
seniority_options = ["Entry-level", "Junior", "Mid-Level", "Senior", "Lead"]
|
1056 |
+
print("\nSelect your experience level:")
|
1057 |
+
for i, option in enumerate(seniority_options, 1):
|
1058 |
+
print(f"{i}. {option}")
|
1059 |
+
|
1060 |
+
seniority_choice = None
|
1061 |
+
while seniority_choice not in range(1, len(seniority_options)+1):
|
1062 |
+
try:
|
1063 |
+
seniority_choice = int(input("Enter the number corresponding to your level: "))
|
1064 |
+
except ValueError:
|
1065 |
+
print(f"Please enter a number between 1 and {len(seniority_options)}")
|
1066 |
+
|
1067 |
+
seniority = seniority_options[seniority_choice - 1]
|
1068 |
+
|
1069 |
+
# Get skills
|
1070 |
+
skills_input = input(f"\nWhat are your top skills relevant to {job_role}? (Separate with commas): ")
|
1071 |
+
skills = [skill.strip() for skill in skills_input.split(",") if skill.strip()]
|
1072 |
+
|
1073 |
+
while not skills:
|
1074 |
+
print("Please enter at least one skill.")
|
1075 |
+
skills_input = input("Your top skills (comma-separated): ")
|
1076 |
+
skills = [skill.strip() for skill in skills_input.split(",") if skill.strip()]
|
1077 |
+
|
1078 |
+
# Confirm collected info
|
1079 |
+
print("\n Interview Setup Complete!")
|
1080 |
+
print(f"Name: {name}")
|
1081 |
+
print(f"Job Role: {job_role}")
|
1082 |
+
print(f"Experience Level: {seniority}")
|
1083 |
+
print(f"Skills: {', '.join(skills)}")
|
1084 |
+
print("\nStarting your mock interview...\n")
|
1085 |
+
|
1086 |
+
return {
|
1087 |
+
"name": name,
|
1088 |
+
"job_role": job_role,
|
1089 |
+
"seniority": seniority,
|
1090 |
+
"skills": skills
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
import threading
|
1094 |
+
|
1095 |
+
def wait_for_user_response(timeout=200):
|
1096 |
+
"""Wait for user input with timeout. Returns '' if no response."""
|
1097 |
+
user_input = []
|
1098 |
+
|
1099 |
+
def get_input():
|
1100 |
+
answer = input("Your Answer (within timeout): ").strip()
|
1101 |
+
user_input.append(answer)
|
1102 |
+
|
1103 |
+
thread = threading.Thread(target=get_input)
|
1104 |
+
thread.start()
|
1105 |
+
thread.join(timeout)
|
1106 |
+
|
1107 |
+
return user_input[0] if user_input else ""
|
1108 |
+
|
1109 |
+
import json
|
1110 |
+
from datetime import datetime
|
1111 |
+
from time import time
|
1112 |
+
import random
|
1113 |
+
|
1114 |
+
def interview_loop(max_questions, timeout_seconds=300, collection_name="interview_questions", judge_pipeline=None, save_path="interview_log.json"):
|
1115 |
+
|
1116 |
+
|
1117 |
+
user_info = get_user_info()
|
1118 |
+
job_role = user_info['job_role']
|
1119 |
+
seniority = user_info['seniority']
|
1120 |
+
skills = user_info['skills']
|
1121 |
+
|
1122 |
+
all_roles = extract_all_roles_from_qdrant(collection_name=collection_name)
|
1123 |
+
retrieved_data = retrieve_interview_data(job_role, all_roles)
|
1124 |
+
context_data = random_context_chunks(retrieved_data, k=4)
|
1125 |
+
|
1126 |
+
conversation_history = []
|
1127 |
+
interview_state = {
|
1128 |
+
"questions": [],
|
1129 |
+
"user_answer": [],
|
1130 |
+
"job_role": job_role,
|
1131 |
+
"seniority": seniority,
|
1132 |
+
"start_time": time()
|
1133 |
+
}
|
1134 |
+
|
1135 |
+
# Store log for evaluation
|
1136 |
+
logged_samples = []
|
1137 |
+
|
1138 |
+
difficulty_adjustment = None
|
1139 |
+
|
1140 |
+
for i in range(max_questions):
|
1141 |
+
last_user_response = conversation_history[-1]['content'] if conversation_history else ""
|
1142 |
+
|
1143 |
+
# Generate question prompt
|
1144 |
+
prompt = build_interview_prompt(
|
1145 |
+
conversation_history=conversation_history,
|
1146 |
+
user_response=last_user_response,
|
1147 |
+
context=context_data,
|
1148 |
+
job_role=job_role,
|
1149 |
+
skills=skills,
|
1150 |
+
seniority=seniority,
|
1151 |
+
difficulty_adjustment=difficulty_adjustment
|
1152 |
+
)
|
1153 |
+
question = groq_llm.predict(prompt)
|
1154 |
+
question_eval = eval_question_quality(question, job_role, seniority, judge_pipeline)
|
1155 |
+
|
1156 |
+
conversation_history.append({'role': "Interviewer", "content": question})
|
1157 |
+
print(f"Interviewer: Q{i + 1} : {question}")
|
1158 |
+
|
1159 |
+
# Wait for user answer
|
1160 |
+
start_time = time()
|
1161 |
+
user_answer = wait_for_user_response(timeout=timeout_seconds)
|
1162 |
+
response_time = time() - start_time
|
1163 |
+
|
1164 |
+
skipped = False
|
1165 |
+
answer_eval = None
|
1166 |
+
ref_answer = None
|
1167 |
+
|
1168 |
+
if not user_answer:
|
1169 |
+
print("No Response Received, moving to next question.")
|
1170 |
+
user_answer = None
|
1171 |
+
skipped = True
|
1172 |
+
difficulty_adjustment = "medium"
|
1173 |
+
else:
|
1174 |
+
conversation_history.append({"role": "Candidate", "content": user_answer})
|
1175 |
+
|
1176 |
+
ref_answer = generate_reference_answer(question, job_role, seniority)
|
1177 |
+
answer_eval = evaluate_answer(
|
1178 |
+
question=question,
|
1179 |
+
answer=user_answer,
|
1180 |
+
ref_answer=ref_answer,
|
1181 |
+
job_role=job_role,
|
1182 |
+
seniority=seniority,
|
1183 |
+
judge_pipeline=judge_pipeline
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
|
1187 |
+
interview_state["user_answer"].append(user_answer)
|
1188 |
+
# Append inline evaluation for history
|
1189 |
+
conversation_history[-1].setdefault('evaluation', []).append({
|
1190 |
+
"technical_depth": {
|
1191 |
+
"score": answer_eval['Score'],
|
1192 |
+
"Reasoning": answer_eval['Reasoning']
|
1193 |
+
}
|
1194 |
+
})
|
1195 |
+
|
1196 |
+
# Adjust difficulty
|
1197 |
+
score = answer_eval['Score'].lower()
|
1198 |
+
if score == "excellent":
|
1199 |
+
difficulty_adjustment = "harder"
|
1200 |
+
elif score in ['poor', 'medium']:
|
1201 |
+
difficulty_adjustment = "easier"
|
1202 |
+
else:
|
1203 |
+
difficulty_adjustment = None
|
1204 |
+
|
1205 |
+
# Store for local logging
|
1206 |
+
logged_samples.append({
|
1207 |
+
"job_role": job_role,
|
1208 |
+
"seniority": seniority,
|
1209 |
+
"skills": skills,
|
1210 |
+
"context": context_data,
|
1211 |
+
"prompt": prompt,
|
1212 |
+
"generated_question": question,
|
1213 |
+
"question_evaluation": question_eval,
|
1214 |
+
"user_answer": user_answer,
|
1215 |
+
"reference_answer": ref_answer,
|
1216 |
+
"answer_evaluation": answer_eval,
|
1217 |
+
"skipped": skipped
|
1218 |
+
})
|
1219 |
+
|
1220 |
+
# Store state
|
1221 |
+
interview_state['questions'].append({
|
1222 |
+
"question": question,
|
1223 |
+
"question_evaluation": question_eval,
|
1224 |
+
"user_answer": user_answer,
|
1225 |
+
"answer_evaluation": answer_eval,
|
1226 |
+
"skipped": skipped
|
1227 |
+
})
|
1228 |
+
|
1229 |
+
interview_state['end_time'] = time()
|
1230 |
+
report = generate_llm_interview_report(interview_state, job_role, seniority)
|
1231 |
+
print("Report : _____________________\n")
|
1232 |
+
print(report)
|
1233 |
+
print('______________________________________________')
|
1234 |
+
|
1235 |
+
# Save full interview logs to JSON
|
1236 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
1237 |
+
filename = f"{save_path.replace('.json', '')}_{timestamp}.json"
|
1238 |
+
with open(filename, "w", encoding="utf-8") as f:
|
1239 |
+
json.dump(logged_samples, f, indent=2, ensure_ascii=False)
|
1240 |
+
|
1241 |
+
print(f" Interview log saved to {filename}")
|
1242 |
+
print("____________________________________\n")
|
1243 |
+
|
1244 |
+
print(f"interview state : {interview_state}")
|
1245 |
+
return interview_state, report
|
1246 |
+
|
1247 |
+
from sklearn.metrics import precision_score, recall_score, f1_score
|
1248 |
+
import numpy as np
|
1249 |
+
# build ground truth for retrieving data for testing
|
1250 |
+
|
1251 |
+
def build_ground_truth(all_roles):
|
1252 |
+
gt = {}
|
1253 |
+
for role in all_roles:
|
1254 |
+
qa_list = get_role_questions(role)
|
1255 |
+
gt[role] = set(q["question"] for q in qa_list if q["question"])
|
1256 |
+
return gt
|
1257 |
+
|
1258 |
+
|
1259 |
+
def evaluate_retrieval(job_role, all_roles, k=10):
|
1260 |
+
"""
|
1261 |
+
Evaluate retrieval quality using Precision@k, Recall@k, and F1@k.
|
1262 |
+
|
1263 |
+
Args:
|
1264 |
+
job_role (str): The input job role to search for.
|
1265 |
+
all_roles (list): List of all available job roles in the system.
|
1266 |
+
k (int): Top-k retrieved questions to evaluate.
|
1267 |
+
|
1268 |
+
Returns:
|
1269 |
+
dict: Evaluation metrics including precision, recall, and f1.
|
1270 |
+
"""
|
1271 |
+
|
1272 |
+
# Step 1: Ground Truth (all exact questions stored for this role)
|
1273 |
+
ground_truth_qs = set(
|
1274 |
+
q["question"].strip()
|
1275 |
+
for q in get_role_questions(job_role)
|
1276 |
+
if q.get("question")
|
1277 |
+
)
|
1278 |
+
|
1279 |
+
if not ground_truth_qs:
|
1280 |
+
print(f"[!] No ground truth found for role: {job_role}")
|
1281 |
+
return {}
|
1282 |
+
|
1283 |
+
# Step 2: Retrieved Questions (may include fallback roles)
|
1284 |
+
retrieved_qas = retrieve_interview_data(job_role, all_roles)
|
1285 |
+
retrieved_qs = [q["question"].strip() for q in retrieved_qas if q.get("question")]
|
1286 |
+
|
1287 |
+
# Step 3: Take top-k retrieved (you can also do full if needed)
|
1288 |
+
retrieved_top_k = retrieved_qs[:k]
|
1289 |
+
|
1290 |
+
# Step 4: Binary relevance (1 if in ground truth, 0 if not)
|
1291 |
+
y_true = [1 if q in ground_truth_qs else 0 for q in retrieved_top_k]
|
1292 |
+
y_pred = [1] * len(y_true) # all retrieved are treated as predicted relevant
|
1293 |
+
|
1294 |
+
precision = precision_score(y_true, y_pred, zero_division=0)
|
1295 |
+
recall = recall_score(y_true, y_pred, zero_division=0)
|
1296 |
+
f1 = f1_score(y_true, y_pred, zero_division=0)
|
1297 |
+
|
1298 |
+
print(f" Retrieval Evaluation for role: '{job_role}' (Top-{k})")
|
1299 |
+
print(f"Precision@{k}: {precision:.2f}")
|
1300 |
+
print(f"Recall@{k}: {recall:.2f}")
|
1301 |
+
print(f"F1@{k}: {f1:.2f}")
|
1302 |
+
print(f"Relevant Retrieved: {sum(y_true)}/{len(y_true)}")
|
1303 |
+
print("–" * 40)
|
1304 |
+
|
1305 |
+
return {
|
1306 |
+
"job_role": job_role,
|
1307 |
+
"precision": precision,
|
1308 |
+
"recall": recall,
|
1309 |
+
"f1": f1,
|
1310 |
+
"relevant_retrieved": sum(y_true),
|
1311 |
+
"total_retrieved": len(y_true),
|
1312 |
+
"ground_truth_count": len(ground_truth_qs),
|
1313 |
+
}
|
1314 |
+
|
1315 |
+
|
1316 |
+
k_values = [5, 10, 20]
|
1317 |
+
all_roles = extract_all_roles_from_qdrant(collection_name="interview_questions")
|
1318 |
+
|
1319 |
+
results = []
|
1320 |
+
|
1321 |
+
for k in k_values:
|
1322 |
+
for role in all_roles:
|
1323 |
+
metrics = evaluate_retrieval(role, all_roles, k=k)
|
1324 |
+
if metrics: # only if we found ground truth
|
1325 |
+
metrics["k"] = k
|
1326 |
+
results.append(metrics)
|
1327 |
+
|
1328 |
+
import pandas as pd
|
1329 |
+
|
1330 |
+
df = pd.DataFrame(results)
|
1331 |
+
summary = df.groupby("k")[["precision", "recall", "f1"]].mean().round(3)
|
1332 |
+
print(summary)
|
1333 |
+
|
1334 |
+
import pandas as pd
|
1335 |
+
import matplotlib.pyplot as plt
|
1336 |
+
import seaborn as sns
|
1337 |
+
|
1338 |
+
# Load the dataset
|
1339 |
+
df = pd.read_csv("/Users/husseinelsaadi/kaggle-local-project/data/retrieval_metrics_table.csv")
|
1340 |
+
|
1341 |
+
# Set plot style
|
1342 |
+
sns.set(style="whitegrid")
|
1343 |
+
|
1344 |
+
# Plot 1: Precision per Job Role
|
1345 |
+
plt.figure(figsize=(12, 6))
|
1346 |
+
sns.barplot(data=df, x="job_role", y="precision")
|
1347 |
+
plt.title("Precision@K per Job Role")
|
1348 |
+
plt.xticks(rotation=45, ha="right")
|
1349 |
+
plt.tight_layout()
|
1350 |
+
plt.show()
|
1351 |
+
|
1352 |
+
# Plot 2: Recall per Job Role
|
1353 |
+
plt.figure(figsize=(12, 6))
|
1354 |
+
sns.barplot(data=df, x="job_role", y="recall")
|
1355 |
+
plt.title("Recall@K per Job Role")
|
1356 |
+
plt.xticks(rotation=45, ha="right")
|
1357 |
+
plt.tight_layout()
|
1358 |
+
plt.show()
|
1359 |
+
|
1360 |
+
# Plot 3: F1 Score per Job Role
|
1361 |
+
plt.figure(figsize=(12, 6))
|
1362 |
+
sns.barplot(data=df, x="job_role", y="f1")
|
1363 |
+
plt.title("F1@K per Job Role")
|
1364 |
+
plt.xticks(rotation=45, ha="right")
|
1365 |
+
plt.tight_layout()
|
1366 |
+
plt.show()
|
1367 |
+
|
1368 |
+
# Plot 4: Grouped Bar Chart for Precision, Recall, F1
|
1369 |
+
df_melted = df.melt(id_vars="job_role", value_vars=["precision", "recall", "f1"],
|
1370 |
+
var_name="Metric", value_name="Score")
|
1371 |
+
plt.figure(figsize=(14, 6))
|
1372 |
+
sns.barplot(data=df_melted, x="job_role", y="Score", hue="Metric")
|
1373 |
+
plt.title("Retrieval Evaluation Metrics per Job Role")
|
1374 |
+
plt.xticks(rotation=45, ha="right")
|
1375 |
+
plt.legend(title="Metric")
|
1376 |
+
plt.tight_layout()
|
1377 |
+
plt.show()
|
1378 |
+
|
1379 |
+
def extract_job_details(job_description):
|
1380 |
+
"""Extract job details such as title, skills, experience level, and years of experience from the job description."""
|
1381 |
+
title_match = re.search(r"(?i)(?:seeking|hiring) a (.+?) to", job_description)
|
1382 |
+
job_title = title_match.group(1) if title_match else "Unknown"
|
1383 |
+
|
1384 |
+
skills_match = re.findall(r"(?i)(?:Proficiency in|Experience with|Knowledge of) (.+?)(?:,|\.| and| or)", job_description)
|
1385 |
+
skills = list(set([skill.strip() for skill in skills_match])) if skills_match else []
|
1386 |
+
|
1387 |
+
experience_match = re.search(r"(\d+)\+? years of experience", job_description)
|
1388 |
+
if experience_match:
|
1389 |
+
years_experience = int(experience_match.group(1))
|
1390 |
+
experience_level = "Senior" if years_experience >= 5 else "Mid" if years_experience >= 3 else "Junior"
|
1391 |
+
else:
|
1392 |
+
years_experience = None
|
1393 |
+
experience_level = "Unknown"
|
1394 |
+
|
1395 |
+
return {
|
1396 |
+
"job_title": job_title,
|
1397 |
+
"skills": skills,
|
1398 |
+
"experience_level": experience_level,
|
1399 |
+
"years_experience": years_experience
|
1400 |
+
}
|
1401 |
+
|
1402 |
+
import re
|
1403 |
+
from docx import Document
|
1404 |
+
import textract
|
1405 |
+
from PyPDF2 import PdfReader
|
1406 |
+
|
1407 |
+
JOB_TITLES = [
|
1408 |
+
"Accountant", "Data Scientist", "Machine Learning Engineer", "Software Engineer",
|
1409 |
+
"Developer", "Analyst", "Researcher", "Intern", "Consultant", "Manager",
|
1410 |
+
"Engineer", "Specialist", "Project Manager", "Product Manager", "Administrator",
|
1411 |
+
"Director", "Officer", "Assistant", "Coordinator", "Supervisor"
|
1412 |
+
]
|
1413 |
+
|
1414 |
+
def clean_filename_name(filename):
|
1415 |
+
# Remove file extension
|
1416 |
+
base = re.sub(r"\.[^.]+$", "", filename)
|
1417 |
+
base = base.strip()
|
1418 |
+
|
1419 |
+
# Remove 'cv' or 'CV' words
|
1420 |
+
base_clean = re.sub(r"\bcv\b", "", base, flags=re.IGNORECASE).strip()
|
1421 |
+
|
1422 |
+
# If after removing CV it's empty, return None
|
1423 |
+
if not base_clean:
|
1424 |
+
return None
|
1425 |
+
|
1426 |
+
# If it contains any digit, return None (unreliable)
|
1427 |
+
if re.search(r"\d", base_clean):
|
1428 |
+
return None
|
1429 |
+
|
1430 |
+
# Replace underscores/dashes with spaces, capitalize
|
1431 |
+
base_clean = base_clean.replace("_", " ").replace("-", " ")
|
1432 |
+
return base_clean.title()
|
1433 |
+
|
1434 |
+
def looks_like_job_title(line):
|
1435 |
+
for title in JOB_TITLES:
|
1436 |
+
pattern = r"\b" + re.escape(title.lower()) + r"\b"
|
1437 |
+
if re.search(pattern, line.lower()):
|
1438 |
+
return True
|
1439 |
+
return False
|
1440 |
+
|
1441 |
+
def extract_name_from_text(lines):
|
1442 |
+
# Try first 3 lines for a name, skipping job titles
|
1443 |
+
for i in range(min(1, len(lines))):
|
1444 |
+
line = lines[i].strip()
|
1445 |
+
if looks_like_job_title(line):
|
1446 |
+
return "unknown"
|
1447 |
+
if re.search(r"\d", line): # skip lines with digits
|
1448 |
+
continue
|
1449 |
+
if len(line.split()) > 4 or len(line) > 40: # too long or many words
|
1450 |
+
continue
|
1451 |
+
# If line has only uppercase words, it's probably not a name
|
1452 |
+
if line.isupper():
|
1453 |
+
continue
|
1454 |
+
# Passed checks, return title-cased line as name
|
1455 |
+
return line.title()
|
1456 |
+
return None
|
1457 |
+
|
1458 |
+
def extract_text_from_file(file_path):
|
1459 |
+
if file_path.endswith('.pdf'):
|
1460 |
+
reader = PdfReader(file_path)
|
1461 |
+
text = "\n".join(page.extract_text() or '' for page in reader.pages)
|
1462 |
+
elif file_path.endswith('.docx'):
|
1463 |
+
doc = Document(file_path)
|
1464 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
1465 |
+
else: # For .doc or fallback
|
1466 |
+
text = textract.process(file_path).decode('utf-8')
|
1467 |
+
return text.strip()
|
1468 |
+
|
1469 |
+
def extract_candidate_details(file_path):
|
1470 |
+
text = extract_text_from_file(file_path)
|
1471 |
+
lines = [line.strip() for line in text.splitlines() if line.strip()]
|
1472 |
+
|
1473 |
+
# Extract name
|
1474 |
+
filename = file_path.split("/")[-1] # just filename, no path
|
1475 |
+
name = clean_filename_name(filename)
|
1476 |
+
if not name:
|
1477 |
+
name = extract_name_from_text(lines)
|
1478 |
+
if not name:
|
1479 |
+
name = "Unknown"
|
1480 |
+
|
1481 |
+
# Extract skills (basic version)
|
1482 |
+
skills = []
|
1483 |
+
skills_section = re.search(r"Skills\s*[:\-]?\s*(.+)", text, re.IGNORECASE)
|
1484 |
+
if skills_section:
|
1485 |
+
raw_skills = skills_section.group(1)
|
1486 |
+
skills = [s.strip() for s in re.split(r",|\n|•|-", raw_skills) if s.strip()]
|
1487 |
+
|
1488 |
+
return {
|
1489 |
+
"name": name,
|
1490 |
+
"skills": skills
|
1491 |
+
}
|
1492 |
+
|
1493 |
+
import gradio as gr
|
1494 |
+
import time
|
1495 |
+
import tempfile
|
1496 |
+
import numpy as np
|
1497 |
+
import scipy.io.wavfile as wavfile
|
1498 |
+
import cv2
|
1499 |
+
import os
|
1500 |
+
import json
|
1501 |
+
from moviepy.editor import VideoFileClip
|
1502 |
+
import shutil
|
1503 |
+
from transformers import BarkModel, AutoProcessor
|
1504 |
+
import torch
|
1505 |
+
import whisper
|
1506 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
1507 |
+
import librosa
|
1508 |
+
|
1509 |
+
# Bark TTS
|
1510 |
+
print("🔁 Loading Bark model...")
|
1511 |
+
model_bark = BarkModel.from_pretrained("suno/bark")
|
1512 |
+
print("✅ Bark model loaded")
|
1513 |
+
|
1514 |
+
print("🔁 Loading Bark processor...")
|
1515 |
+
processor_bark = AutoProcessor.from_pretrained("suno/bark")
|
1516 |
+
print("✅ Bark processor loaded")
|
1517 |
+
print("🔁 Moving Bark model to device...")
|
1518 |
+
model_bark.to("cuda" if torch.cuda.is_available() else "cpu")
|
1519 |
+
print("✅ Bark model on device")
|
1520 |
+
bark_voice_preset = "v2/en_speaker_6"
|
1521 |
+
|
1522 |
+
def bark_tts(text):
|
1523 |
+
print(f"🔁 Synthesizing TTS for: {text}")
|
1524 |
+
inputs = processor_bark(text, return_tensors="pt", voice_preset=bark_voice_preset)
|
1525 |
+
inputs = {k: v.to(model_bark.device) for k, v in inputs.items()}
|
1526 |
+
speech_values = model_bark.generate(**inputs)
|
1527 |
+
speech = speech_values.cpu().numpy().squeeze()
|
1528 |
+
speech = (speech * 32767).astype(np.int16)
|
1529 |
+
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
1530 |
+
wavfile.write(temp_wav.name, 22050, speech)
|
1531 |
+
return temp_wav.name
|
1532 |
+
|
1533 |
+
# Whisper STT
|
1534 |
+
print("🔁 Loading Whisper model...")
|
1535 |
+
whisper_model = whisper.load_model("base")
|
1536 |
+
print("✅ Whisper model loaded")
|
1537 |
+
def whisper_stt(audio_path):
|
1538 |
+
if not audio_path or not os.path.exists(audio_path): return ""
|
1539 |
+
result = whisper_model.transcribe(audio_path)
|
1540 |
+
return result["text"]
|
1541 |
+
|
1542 |
+
|
1543 |
+
# DeepFace (Video Face Emotion)
|
1544 |
+
def ensure_mp4(video_input):
|
1545 |
+
# video_input could be a file-like object, a path, or a Gradio temp path
|
1546 |
+
if isinstance(video_input, str):
|
1547 |
+
input_path = video_input
|
1548 |
+
else:
|
1549 |
+
# It's a file-like object (rare for Gradio video, but handle it)
|
1550 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".webm") as temp_in:
|
1551 |
+
temp_in.write(video_input.read())
|
1552 |
+
input_path = temp_in.name
|
1553 |
+
|
1554 |
+
# If already mp4, return as is
|
1555 |
+
if input_path.endswith(".mp4"):
|
1556 |
+
return input_path
|
1557 |
+
|
1558 |
+
# Convert to mp4 using moviepy
|
1559 |
+
mp4_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
1560 |
+
try:
|
1561 |
+
clip = VideoFileClip(input_path)
|
1562 |
+
clip.write_videofile(mp4_path, codec="libx264", audio=False, verbose=False, logger=None)
|
1563 |
+
clip.close()
|
1564 |
+
except Exception as e:
|
1565 |
+
print("Video conversion failed:", e)
|
1566 |
+
# As fallback, just copy original
|
1567 |
+
shutil.copy(input_path, mp4_path)
|
1568 |
+
return mp4_path
|
1569 |
+
|
1570 |
+
def analyze_video_emotions(video_input, sample_rate=15):
|
1571 |
+
# Convert input to an mp4 file OpenCV can process
|
1572 |
+
mp4_path = ensure_mp4(video_input)
|
1573 |
+
if not mp4_path or not os.path.exists(mp4_path):
|
1574 |
+
return "no_face"
|
1575 |
+
cap = cv2.VideoCapture(mp4_path)
|
1576 |
+
frame_count = 0
|
1577 |
+
emotion_counts = {}
|
1578 |
+
while True:
|
1579 |
+
ret, frame = cap.read()
|
1580 |
+
if not ret: break
|
1581 |
+
if frame_count % sample_rate == 0:
|
1582 |
+
try:
|
1583 |
+
result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
|
1584 |
+
dominant = result[0]["dominant_emotion"] if isinstance(result, list) else result["dominant_emotion"]
|
1585 |
+
emotion_counts[dominant] = emotion_counts.get(dominant, 0) + 1
|
1586 |
+
except Exception: pass
|
1587 |
+
frame_count += 1
|
1588 |
+
cap.release()
|
1589 |
+
if not emotion_counts: return "no_face"
|
1590 |
+
return max(emotion_counts.items(), key=lambda x: x[1])[0]
|
1591 |
+
|
1592 |
+
# Original Hugging Face model: HaniaRuby/speech-emotion-recognition-wav2vec2
|
1593 |
+
local_wav2vec_model_path = "HaniaRuby/speech-emotion-recognition-wav2vec2" # Local path to the downloaded model files
|
1594 |
+
print("🔁 Loading Wav2Vec processor and model...")
|
1595 |
+
wav2vec_processor = Wav2Vec2Processor.from_pretrained(local_wav2vec_model_path)
|
1596 |
+
wav2vec_model = Wav2Vec2ForSequenceClassification.from_pretrained(local_wav2vec_model_path)
|
1597 |
+
print("✅ Wav2Vec model loaded")
|
1598 |
+
wav2vec_model.eval()
|
1599 |
+
voice_label_map = {
|
1600 |
+
0: 'angry', 1: 'disgust', 2: 'fear', 3: 'happy',
|
1601 |
+
4: 'neutral', 5: 'sad', 6: 'surprise'
|
1602 |
+
}
|
1603 |
+
|
1604 |
+
|
1605 |
+
|
1606 |
+
def analyze_audio_emotion(audio_path):
|
1607 |
+
print(f"🔁 Analyzing audio emotion for: {audio_path}")
|
1608 |
+
if not audio_path or not os.path.exists(audio_path): return "neutral"
|
1609 |
+
speech, sr = librosa.load(audio_path, sr=16000)
|
1610 |
+
inputs = wav2vec_processor(speech, sampling_rate=16000, return_tensors="pt")
|
1611 |
+
with torch.no_grad():
|
1612 |
+
logits = wav2vec_model(**inputs).logits
|
1613 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
1614 |
+
predicted_id = torch.argmax(probs, dim=-1).item()
|
1615 |
+
return voice_label_map.get(predicted_id, "neutral")
|
1616 |
+
|
1617 |
+
# --- Effective confidence calculation
|
1618 |
+
def interpret_confidence(voice_label, face_label, answer_score_label, k=0.2):
|
1619 |
+
emotion_map = {"happy": 0.9, "neutral": 0.6, "surprised": 0.7, "sad": 0.4, "angry": 0.3, "disgust": 0.2, "fear": 0.3, "no_face": 0.5, "unknown": 0.5}
|
1620 |
+
answer_score_map = {"excellent": 1.0, "good": 0.8, "medium": 0.6, "poor": 0.3}
|
1621 |
+
voice_score, face_score, answer_score = emotion_map.get(voice_label, 0.5), emotion_map.get(face_label, 0.5), answer_score_map.get(answer_score_label, 0.5)
|
1622 |
+
avg_emotion = (voice_score + face_score) / 2
|
1623 |
+
control_bonus = max(0, answer_score - avg_emotion) * k
|
1624 |
+
eff_conf = (0.5 * answer_score + 0.22 * voice_score + 0.18 * face_score + 0.1 * control_bonus)
|
1625 |
+
return {"effective_confidence": round(eff_conf, 3), "answer_score": round(answer_score, 2), "voice_score": round(voice_score, 2), "face_score": round(face_score, 2), "control_bonus": round(control_bonus, 3)}
|
1626 |
+
|
1627 |
+
seniority_mapping = {
|
1628 |
+
"Entry-level": 1, "Junior": 2, "Mid-Level": 3, "Senior": 4, "Lead": 5
|
1629 |
+
}
|
1630 |
+
|
1631 |
+
|
1632 |
+
# --- 2. Gradio App ---
|
1633 |
+
|
1634 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
1635 |
+
user_data = gr.State({})
|
1636 |
+
interview_state = gr.State({})
|
1637 |
+
missing_fields_state = gr.State([])
|
1638 |
+
|
1639 |
+
# --- UI Layout ---
|
1640 |
+
with gr.Column(visible=True) as user_info_section:
|
1641 |
+
gr.Markdown("## Candidate Information")
|
1642 |
+
cv_file = gr.File(label="Upload CV")
|
1643 |
+
job_desc = gr.Textbox(label="Job Description")
|
1644 |
+
start_btn = gr.Button("Continue", interactive=False)
|
1645 |
+
|
1646 |
+
with gr.Column(visible=False) as missing_section:
|
1647 |
+
gr.Markdown("## Missing Information")
|
1648 |
+
name_in = gr.Textbox(label="Name", visible=False)
|
1649 |
+
role_in = gr.Textbox(label="Job Role", visible=False)
|
1650 |
+
seniority_in = gr.Dropdown(list(seniority_mapping.keys()), label="Seniority", visible=False)
|
1651 |
+
skills_in = gr.Textbox(label="Skills", visible=False)
|
1652 |
+
submit_btn = gr.Button("Submit", interactive=False)
|
1653 |
+
|
1654 |
+
with gr.Column(visible=False) as interview_pre_section:
|
1655 |
+
pre_interview_greeting_md = gr.Markdown()
|
1656 |
+
start_interview_final_btn = gr.Button("Start Interview")
|
1657 |
+
|
1658 |
+
with gr.Column(visible=False) as interview_section:
|
1659 |
+
gr.Markdown("## Interview in Progress")
|
1660 |
+
question_audio = gr.Audio(label="Listen", interactive=False, autoplay=True)
|
1661 |
+
question_text = gr.Markdown()
|
1662 |
+
user_audio_input = gr.Audio(sources=["microphone"], type="filepath", label="1. Record Audio Answer")
|
1663 |
+
user_video_input = gr.Video(sources=["webcam"], label="2. Record Video Answer")
|
1664 |
+
stt_transcript = gr.Textbox(label="Transcribed Answer (edit if needed)")
|
1665 |
+
confirm_btn = gr.Button("Confirm Answer")
|
1666 |
+
evaluation_display = gr.Markdown()
|
1667 |
+
emotion_display = gr.Markdown()
|
1668 |
+
interview_summary = gr.Markdown(visible=False)
|
1669 |
+
|
1670 |
+
# --- UI Logic ---
|
1671 |
+
|
1672 |
+
def validate_start_btn(cv_file, job_desc):
|
1673 |
+
return gr.update(interactive=(cv_file is not None and hasattr(cv_file, "name") and bool(job_desc and job_desc.strip())))
|
1674 |
+
cv_file.change(validate_start_btn, [cv_file, job_desc], start_btn)
|
1675 |
+
job_desc.change(validate_start_btn, [cv_file, job_desc], start_btn)
|
1676 |
+
|
1677 |
+
def process_and_route_initial(cv_file, job_desc):
|
1678 |
+
details = extract_candidate_details(cv_file.name)
|
1679 |
+
job_info = extract_job_details(job_desc)
|
1680 |
+
data = {
|
1681 |
+
"name": details.get("name", "unknown"), "job_role": job_info.get("job_title", "unknown"),
|
1682 |
+
"seniority": job_info.get("experience_level", "unknown"), "skills": job_info.get("skills", [])
|
1683 |
+
}
|
1684 |
+
missing = [k for k, v in data.items() if (isinstance(v, str) and v.lower() == "unknown") or not v]
|
1685 |
+
if missing:
|
1686 |
+
return data, missing, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
1687 |
+
else:
|
1688 |
+
greeting = f"Hello {data['name']}, your profile is ready. Click 'Start Interview' when ready."
|
1689 |
+
return data, missing, gr.update(visible=False), gr.update(visible=False), gr.update(visible=True, value=greeting)
|
1690 |
+
start_btn.click(
|
1691 |
+
process_and_route_initial,
|
1692 |
+
[cv_file, job_desc],
|
1693 |
+
[user_data, missing_fields_state, user_info_section, missing_section, pre_interview_greeting_md]
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
def show_missing(missing):
|
1697 |
+
if missing is None: missing = []
|
1698 |
+
return gr.update(visible="name" in missing), gr.update(visible="job_role" in missing), gr.update(visible="seniority" in missing), gr.update(visible="skills" in missing)
|
1699 |
+
missing_fields_state.change(show_missing, missing_fields_state, [name_in, role_in, seniority_in, skills_in])
|
1700 |
+
|
1701 |
+
def validate_fields(name, role, seniority, skills, missing):
|
1702 |
+
if not missing: return gr.update(interactive=False)
|
1703 |
+
all_filled = all([(not ("name" in missing) or bool(name.strip())), (not ("job_role" in missing) or bool(role.strip())), (not ("seniority" in missing) or bool(seniority)), (not ("skills" in missing) or bool(skills.strip())),])
|
1704 |
+
return gr.update(interactive=all_filled)
|
1705 |
+
for inp in [name_in, role_in, seniority_in, skills_in]:
|
1706 |
+
inp.change(validate_fields, [name_in, role_in, seniority_in, skills_in, missing_fields_state], submit_btn)
|
1707 |
+
|
1708 |
+
def complete_manual(data, name, role, seniority, skills):
|
1709 |
+
if data["name"].lower() == "unknown": data["name"] = name
|
1710 |
+
if data["job_role"].lower() == "unknown": data["job_role"] = role
|
1711 |
+
if data["seniority"].lower() == "unknown": data["seniority"] = seniority
|
1712 |
+
if not data["skills"]: data["skills"] = [s.strip() for s in skills.split(",")]
|
1713 |
+
greeting = f"Hello {data['name']}, your profile is ready. Click 'Start Interview' to begin."
|
1714 |
+
return data, gr.update(visible=False), gr.update(visible=True), gr.update(value=greeting)
|
1715 |
+
submit_btn.click(complete_manual, [user_data, name_in, role_in, seniority_in, skills_in], [user_data, missing_section, interview_pre_section, pre_interview_greeting_md])
|
1716 |
+
|
1717 |
+
def start_interview(data):
|
1718 |
+
# --- Advanced state with full logging ---
|
1719 |
+
state = {
|
1720 |
+
"questions": [], "answers": [], "face_labels": [], "voice_labels": [], "timings": [],
|
1721 |
+
"question_evaluations": [], "answer_evaluations": [], "effective_confidences": [],
|
1722 |
+
"conversation_history": [],
|
1723 |
+
"difficulty_adjustment": None,
|
1724 |
+
"question_idx": 0, "max_questions": 3, "q_start_time": time.time(),
|
1725 |
+
"log": []
|
1726 |
+
}
|
1727 |
+
# --- Optionally: context retrieval here (currently just blank) ---
|
1728 |
+
context = ""
|
1729 |
+
prompt = build_interview_prompt(
|
1730 |
+
conversation_history=[], user_response="", context=context, job_role=data["job_role"],
|
1731 |
+
skills=data["skills"], seniority=data["seniority"], difficulty_adjustment=None,
|
1732 |
+
voice_label="neutral", face_label="neutral"
|
1733 |
+
)
|
1734 |
+
first_q = groq_llm.predict(prompt)
|
1735 |
+
# Evaluate Q for quality
|
1736 |
+
q_eval = eval_question_quality(first_q, data["job_role"], data["seniority"], None)
|
1737 |
+
state["questions"].append(first_q)
|
1738 |
+
state["question_evaluations"].append(q_eval)
|
1739 |
+
state["conversation_history"].append({'role': 'Interviewer', 'content': first_q})
|
1740 |
+
audio_path = bark_tts(first_q)
|
1741 |
+
# LOG
|
1742 |
+
state["log"].append({"type": "question", "question": first_q, "question_eval": q_eval, "timestamp": time.time()})
|
1743 |
+
return state, gr.update(visible=False), gr.update(visible=True), audio_path, f"*Question 1:* {first_q}"
|
1744 |
+
start_interview_final_btn.click(start_interview, [user_data], [interview_state, interview_pre_section, interview_section, question_audio, question_text])
|
1745 |
+
|
1746 |
+
def transcribe(audio_path):
|
1747 |
+
return whisper_stt(audio_path)
|
1748 |
+
user_audio_input.change(transcribe, user_audio_input, stt_transcript)
|
1749 |
+
|
1750 |
+
def process_answer(transcript, audio_path, video_path, state, data):
|
1751 |
+
if not transcript and not video_path:
|
1752 |
+
return state, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
1753 |
+
elapsed = round(time.time() - state.get("q_start_time", time.time()), 2)
|
1754 |
+
state["timings"].append(elapsed)
|
1755 |
+
state["answers"].append(transcript)
|
1756 |
+
state["conversation_history"].append({'role': 'Candidate', 'content': transcript})
|
1757 |
+
|
1758 |
+
# --- 1. Emotion analysis ---
|
1759 |
+
voice_label = analyze_audio_emotion(audio_path)
|
1760 |
+
face_label = analyze_video_emotions(video_path)
|
1761 |
+
state["voice_labels"].append(voice_label)
|
1762 |
+
state["face_labels"].append(face_label)
|
1763 |
+
|
1764 |
+
# --- 2. Evaluate previous Q and Answer ---
|
1765 |
+
last_q = state["questions"][-1]
|
1766 |
+
q_eval = state["question_evaluations"][-1] # Already in state
|
1767 |
+
ref_answer = generate_reference_answer(last_q, data["job_role"], data["seniority"])
|
1768 |
+
answer_eval = evaluate_answer(last_q, transcript, ref_answer, data["job_role"], data["seniority"], None)
|
1769 |
+
state["answer_evaluations"].append(answer_eval)
|
1770 |
+
answer_score = answer_eval.get("Score", "medium") if answer_eval else "medium"
|
1771 |
+
|
1772 |
+
# --- 3. Adaptive difficulty ---
|
1773 |
+
if answer_score == "excellent":
|
1774 |
+
state["difficulty_adjustment"] = "harder"
|
1775 |
+
elif answer_score in ("medium", "poor"):
|
1776 |
+
state["difficulty_adjustment"] = "easier"
|
1777 |
+
else:
|
1778 |
+
state["difficulty_adjustment"] = None
|
1779 |
+
|
1780 |
+
# --- 4. Effective confidence ---
|
1781 |
+
eff_conf = interpret_confidence(voice_label, face_label, answer_score)
|
1782 |
+
state["effective_confidences"].append(eff_conf)
|
1783 |
+
|
1784 |
+
# --- LOG ---
|
1785 |
+
state["log"].append({
|
1786 |
+
"type": "answer",
|
1787 |
+
"question": last_q,
|
1788 |
+
"answer": transcript,
|
1789 |
+
"answer_eval": answer_eval,
|
1790 |
+
"ref_answer": ref_answer,
|
1791 |
+
"face_label": face_label,
|
1792 |
+
"voice_label": voice_label,
|
1793 |
+
"effective_confidence": eff_conf,
|
1794 |
+
"timing": elapsed,
|
1795 |
+
"timestamp": time.time()
|
1796 |
+
})
|
1797 |
+
|
1798 |
+
# --- Next or End ---
|
1799 |
+
qidx = state["question_idx"] + 1
|
1800 |
+
if qidx >= state["max_questions"]:
|
1801 |
+
# Save as JSON (optionally)
|
1802 |
+
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
1803 |
+
log_file = f"interview_log_{timestamp}.json"
|
1804 |
+
with open(log_file, "w", encoding="utf-8") as f:
|
1805 |
+
json.dump(state["log"], f, indent=2, ensure_ascii=False)
|
1806 |
+
# Report
|
1807 |
+
summary = "# Interview Summary\n"
|
1808 |
+
for i, q in enumerate(state["questions"]):
|
1809 |
+
summary += (f"\n### Q{i + 1}: {q}\n"
|
1810 |
+
f"- *Answer*: {state['answers'][i]}\n"
|
1811 |
+
f"- *Q Eval*: {state['question_evaluations'][i]}\n"
|
1812 |
+
f"- *A Eval*: {state['answer_evaluations'][i]}\n"
|
1813 |
+
f"- *Face Emotion: {state['face_labels'][i]}, **Voice Emotion*: {state['voice_labels'][i]}\n"
|
1814 |
+
f"- *Effective Confidence*: {state['effective_confidences'][i]['effective_confidence']}\n"
|
1815 |
+
f"- *Time*: {state['timings'][i]}s\n")
|
1816 |
+
summary += f"\n\n⏺ Full log saved as {log_file}."
|
1817 |
+
return (state, gr.update(visible=True, value=summary), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(visible=True, value=f"Last Detected — Face: {face_label}, Voice: {voice_label}"))
|
1818 |
+
else:
|
1819 |
+
# --- Build next prompt using adaptive difficulty ---
|
1820 |
+
state["question_idx"] = qidx
|
1821 |
+
state["q_start_time"] = time.time()
|
1822 |
+
context = "" # You can add your context logic here
|
1823 |
+
prompt = build_interview_prompt(
|
1824 |
+
conversation_history=state["conversation_history"],
|
1825 |
+
user_response=transcript,
|
1826 |
+
context=context,
|
1827 |
+
job_role=data["job_role"],
|
1828 |
+
skills=data["skills"],
|
1829 |
+
seniority=data["seniority"],
|
1830 |
+
difficulty_adjustment=state["difficulty_adjustment"],
|
1831 |
+
face_label=face_label,
|
1832 |
+
voice_label=voice_label,
|
1833 |
+
effective_confidence=eff_conf
|
1834 |
+
)
|
1835 |
+
next_q = groq_llm.predict(prompt)
|
1836 |
+
# Evaluate Q quality
|
1837 |
+
q_eval = eval_question_quality(next_q, data["job_role"], data["seniority"], None)
|
1838 |
+
state["questions"].append(next_q)
|
1839 |
+
state["question_evaluations"].append(q_eval)
|
1840 |
+
state["conversation_history"].append({'role': 'Interviewer', 'content': next_q})
|
1841 |
+
state["log"].append({"type": "question", "question": next_q, "question_eval": q_eval, "timestamp": time.time()})
|
1842 |
+
audio_path = bark_tts(next_q)
|
1843 |
+
# Display evaluations
|
1844 |
+
eval_md = f"*Last Answer Eval:* {answer_eval}\n\n*Effective Confidence:* {eff_conf}"
|
1845 |
+
return (
|
1846 |
+
state, gr.update(visible=False), audio_path, f"*Question {qidx + 1}:* {next_q}",
|
1847 |
+
gr.update(value=None), gr.update(value=None),
|
1848 |
+
gr.update(visible=True, value=f"Last Detected — Face: {face_label}, Voice: {voice_label}"),
|
1849 |
+
)
|
1850 |
+
confirm_btn.click(
|
1851 |
+
process_answer,
|
1852 |
+
[stt_transcript, user_audio_input, user_video_input, interview_state, user_data],
|
1853 |
+
[interview_state, interview_summary, question_audio, question_text, user_audio_input, user_video_input, emotion_display]
|
1854 |
+
).then(
|
1855 |
+
lambda: (gr.update(value=None), gr.update(value=None)), None, [user_audio_input, user_video_input]
|
1856 |
+
)
|
1857 |
+
|
1858 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core Scientific Stack
|
2 |
+
numpy==1.24
|
3 |
+
scipy
|
4 |
+
soundfile
|
5 |
+
sounddevice
|
6 |
+
opencv-python==4.7.0.72
|
7 |
+
moviepy
|
8 |
+
librosa
|
9 |
+
|
10 |
+
# Hugging Face Transformers + Whisper + Bark
|
11 |
+
transformers
|
12 |
+
torch
|
13 |
+
sentence-transformers
|
14 |
+
git+https://github.com/openai/whisper.git
|
15 |
+
git+https://github.com/suno-ai/bark.git
|
16 |
+
|
17 |
+
# TTS + gTTS
|
18 |
+
TTS
|
19 |
+
gTTS
|
20 |
+
|
21 |
+
# Langchain ecosystem
|
22 |
+
langchain
|
23 |
+
langchain_groq
|
24 |
+
langchain_community
|
25 |
+
langchain_huggingface
|
26 |
+
llama-index
|
27 |
+
cohere
|
28 |
+
|
29 |
+
# Vector database
|
30 |
+
qdrant-client
|
31 |
+
|
32 |
+
# Emotion & face recognition
|
33 |
+
deepface
|
34 |
+
tensorflow
|
35 |
+
tf-keras
|
36 |
+
|
37 |
+
# Document parsing (CV/Job Description)
|
38 |
+
textract
|
39 |
+
PyPDF2
|
40 |
+
python-docx
|
41 |
+
|
42 |
+
# Audio I/O and video support
|
43 |
+
ffmpeg-python
|
44 |
+
pyaudio
|
45 |
+
|
46 |
+
# Misc tools
|
47 |
+
fuzzywuzzy
|
48 |
+
inputimeout
|
49 |
+
evaluate
|
50 |
+
datasets
|
51 |
+
|
52 |
+
# Ensure compatibility with pip
|
53 |
+
pip==23.3.1
|