Traffic / app.py
hvahora123's picture
Upload 11 files
12b7c16
raw
history blame
6.89 kB
import glob
import streamlit as st
import wget
from PIL import Image
import torch
import cv2
import os
import time
st.set_page_config(layout="wide")
cfg_model_path = 'models/yolov5s.pt'
model = None
confidence = .25
def image_input(data_src):
img_file = None
if data_src == 'Sample data':
# get all sample images
img_path = glob.glob('data/sample_images/*')
img_slider = st.slider("Select a test image.", min_value=1, max_value=len(img_path), step=1)
img_file = img_path[img_slider - 1]
else:
img_bytes = st.sidebar.file_uploader("Upload an image", type=['png', 'jpeg', 'jpg'])
if img_bytes:
img_file = "data/uploaded_data/upload." + img_bytes.name.split('.')[-1]
Image.open(img_bytes).save(img_file)
if img_file:
col1, col2 = st.columns(2)
with col1:
st.image(img_file, caption="Selected Image")
with col2:
img = infer_image(img_file)
st.image(img, caption="Model prediction")
def video_input(data_src):
vid_file = None
if data_src == 'Sample data':
vid_file = "data/sample_videos/sample.mp4"
else:
vid_bytes = st.sidebar.file_uploader("Upload a video", type=['mp4', 'mpv', 'avi'])
if vid_bytes:
vid_file = "data/uploaded_data/upload." + vid_bytes.name.split('.')[-1]
with open(vid_file, 'wb') as out:
out.write(vid_bytes.read())
if vid_file:
cap = cv2.VideoCapture(vid_file)
custom_size = st.sidebar.checkbox("Custom frame size")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if custom_size:
width = st.sidebar.number_input("Width", min_value=120, step=20, value=width)
height = st.sidebar.number_input("Height", min_value=120, step=20, value=height)
fps = 0
st1, st2, st3 = st.columns(3)
with st1:
st.markdown("## Height")
st1_text = st.markdown(f"{height}")
with st2:
st.markdown("## Width")
st2_text = st.markdown(f"{width}")
with st3:
st.markdown("## FPS")
st3_text = st.markdown(f"{fps}")
st.markdown("---")
output = st.empty()
prev_time = 0
curr_time = 0
while True:
ret, frame = cap.read()
if not ret:
st.write("Can't read frame, stream ended? Exiting ....")
break
frame = cv2.resize(frame, (width, height))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
output_img = infer_image(frame)
output.image(output_img)
curr_time = time.time()
fps = 1 / (curr_time - prev_time)
prev_time = curr_time
st1_text.markdown(f"**{height}**")
st2_text.markdown(f"**{width}**")
st3_text.markdown(f"**{fps:.2f}**")
cap.release()
from roboflow import Roboflow
rf = Roboflow(api_key="BSImkKkNh25lMbRDYAAC")
project = rf.workspace().project("ambulances-model")
modelA = project.version(5).model
def infer_image(img, size=None):
model.conf = confidence
result = model(img, size=size) if size else model(img)
abc=result.pandas().xyxy[0]
tdd=abc['name'].value_counts()
annos=tdd.to_string()
#print(str(result)[20:69])
result.render()
image = Image.fromarray(result.ims[0])
image.save("abc.jpg")
modelA.predict("abc.jpg", confidence=40, overlap=30).save("abc.jpg")
image=cv2.cvtColor(cv2.imread("abc.jpg"), cv2.COLOR_BGR2RGB)
y0, dy = 50, 50
for i, line in enumerate(annos.split('\n')):
y = y0 + i*dy
image=cv2.putText(image, line, (10, y ), cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,0),10)
return image
@st.experimental_singleton
def load_model(path, device):
model_ = torch.hub.load('ultralytics/yolov5', 'custom', path=path, force_reload=True)
model_.to(device)
print("model to ", device)
return model_
@st.experimental_singleton
def download_model(url):
model_file = wget.download(url, out="models")
return model_file
def get_user_model():
model_src = st.sidebar.radio("Model source", ["file upload", "url"])
model_file = None
if model_src == "file upload":
model_bytes = st.sidebar.file_uploader("Upload a model file", type=['pt'])
if model_bytes:
model_file = "models/uploaded_" + model_bytes.name
with open(model_file, 'wb') as out:
out.write(model_bytes.read())
else:
url = st.sidebar.text_input("model url")
if url:
model_file_ = download_model(url)
if model_file_.split(".")[-1] == "pt":
model_file = model_file_
return model_file
def main():
# global variables
global model, confidence, cfg_model_path
st.title("Traffic Management Yolo")
st.sidebar.title("Options")
# upload model
model_src = st.sidebar.radio("Select yolov5 file", ["Use Yolo"])
# URL, upload file (max 200 mb)
if model_src == "Use your own model":
user_model_path = get_user_model()
if user_model_path:
cfg_model_path = user_model_path
st.sidebar.text(cfg_model_path.split("/")[-1])
st.sidebar.markdown("---")
# check if model file is available
if not os.path.isfile(cfg_model_path):
st.warning("Model not Found", icon="⚠️")
else:
# device options
if torch.cuda.is_available():
device_option = st.sidebar.radio("PC type", ['cpu', 'cuda'], disabled=False, index=0)
else:
device_option = st.sidebar.radio("PC type", ['cpu', 'cuda'], disabled=True, index=0)
# load model
model = load_model(cfg_model_path, device_option)
# confidence slider
confidence = st.sidebar.slider('Confidence', min_value=0.1, max_value=1.0, value=.45)
# custom classes
if st.sidebar.checkbox("Select Classes"):
model_names = list(model.names.values())
assigned_class = st.sidebar.multiselect("Select Classes", model_names, default=[model_names[0]])
classes = [model_names.index(name) for name in assigned_class]
model.classes = classes
else:
model.classes = list(model.names.keys())
st.sidebar.markdown("---")
# input options
input_option = st.sidebar.radio("Select type: ", ['image', 'video'])
# input src option
data_src = st.sidebar.radio("Select input source: ", ['Sample data', 'Upload your own data'])
if input_option == 'image':
image_input(data_src)
else:
video_input(data_src)
if __name__ == "__main__":
try:
main()
except SystemExit:
pass