File size: 30,512 Bytes
0531be0
 
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20cbc9
91a801a
 
b20cbc9
91a801a
 
 
 
 
 
 
 
 
 
b20cbc9
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0531be0
91a801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import uuid

import gradio as gr
import pandas as pd
import os
import subprocess
import time
import shutil
import sys
from datetime import datetime
import re
from PIL import Image

# --- Configuration ---
#AUTFORGE_SCRIPT_PATH = "auto_forge.py"  # Make sure this points to your script
DEFAULT_MATERIALS_CSV = "default_materials.csv"
GRADIO_OUTPUT_BASE_DIR = "output"
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)

REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
DISPLAY_COL_MAP = {
    "Brand": "Brand",
    " Name": "Name",
    " TD": "TD",
    " Color": "Color (Hex)",
}


def ensure_required_cols(df, *, in_display_space):
    """
    Return a copy of *df* with every required column present.
    If *in_display_space* is True we use the display names
    (Brand, Name, TD, Color (Hex)); otherwise we use the script names.
    """
    target_cols = (
        DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
    )
    df_fixed = df.copy()
    for col_script, col_display in target_cols.items():
        if col_display not in df_fixed.columns:
            # sensible defaults
            if "TD" in col_display:
                default = 0.0
            elif "Color" in col_display:
                default = "#000000"
            elif "Owned" in col_display:  # NEW
                default = "false"
            else:
                default = ""
            df_fixed[col_display] = default
    # order columns nicely
    return df_fixed[list(target_cols.values())]


def rgba_to_hex(col: str) -> str:
    """
    Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'.
    If the input is already a hex code or anything unexpected,
    return it unchanged.
    """
    if not isinstance(col, str):
        return col
    col = col.strip()
    if col.startswith("#"):          # already fine
        return col.upper()

    m = re.match(
        r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
        col,
    )
    if not m:
        return col                   # not something we recognise

    r, g, b = (int(float(x)) for x in m.groups()[:3])
    return "#{:02X}{:02X}{:02X}".format(r, g, b)


# --- Helper Functions ---
def get_script_args_info(exclude_args=None):
    if exclude_args is None:
        exclude_args = []

    all_args_info = [
        # input_image is handled separately in the UI
        {
            "name": "--iterations",
            "type": "number",
            "default": 2000,
            "help": "Number of optimization iterations",
        },
        {
            "name": "--layer_height",
            "type": "number",
            "default": 0.04,
            "step": 0.01,
            "help": "Layer thickness in mm",
        },
        {
            "name": "--max_layers",
            "type": "number",
            "default": 75,
            "precision": 0,
            "help": "Maximum number of layers",
        },
        {
            "name": "--learning_rate",
            "type": "number",
            "default": 0.015,
            "step": 0.001,
            "help": "Learning rate for optimization",
        },
        {
            "name": "--background_height",
            "type": "number",
            "default": 0.4,
            "step": 0.01,
            "help": "Height of the background in mm",
        },
        {
            "name": "--background_color",
            "type": "colorpicker",
            "default": "#000000",
            "help": "Background color",
        },
        {
            "name": "--stl_output_size",
            "type": "number",
            "default": 100,
            "precision": 0,
            "help": "Size of the longest dimension of the output STL file in mm",
        },
        {
            "name": "--nozzle_diameter",
            "type": "number",
            "default": 0.4,
            "step": 0.1,
            "help": "Diameter of the printer nozzle in mm",
        },
        {
            "name": "--pruning_max_colors",
            "type": "number",
            "default": 10,
            "precision": 0,
            "help": "Max number of colors allowed after pruning",
        },
        {
            "name": "--pruning_max_swaps",
            "type": "number",
            "default": 20,
            "precision": 0,
            "help": "Max number of swaps allowed after pruning",
        },
        {
            "name": "--pruning_max_layer",
            "type": "number",
            "default": 75,
            "precision": 0,
            "help": "Max number of layers allowed after pruning",
        },
        {
            "name": "--warmup_fraction",
            "type": "slider",
            "default": 1.0,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01,
            "help": "Fraction of iterations for keeping the tau at the initial value",
        },
        {
            "name": "--learning_rate_warmup_fraction",
            "type": "slider",
            "default": 0.25,
            "min": 0.0,
            "max": 1.0,
            "step": 0.01,
            "help": "Fraction of iterations that the learning rate is increasing (warmup)",
        },
        # {
        #     "name": "--init_tau",
        #     "type": "number",
        #     "default": 1.0,
        #     "help": "Initial tau value for Gumbel-Softmax",
        # },
        # {
        #     "name": "--final_tau",
        #     "type": "number",
        #     "default": 0.01,
        #     "help": "Final tau value for Gumbel-Softmax",
        # },
        # {
        #     "name": "--min_layers",
        #     "type": "number",
        #     "default": 0,
        #     "precision": 0,
        #     "help": "Minimum number of layers. Used for pruning.",
        # },
        {
            "name": "--early_stopping",
            "type": "number",
            "default": 1500,
            "precision": 0,
            "help": "Number of steps without improvement before stopping",
        },
        {
            "name": "--random_seed",
            "type": "number",
            "default": 0,
            "precision": 0,
            "help": "Specify the random seed, or use 0 for automatic generation",
        },
        {
            "name": "--num_init_rounds",
            "type": "number",
            "default": 32,
            "precision": 0,
            "help": "Number of rounds to choose the starting height map from.",
        },
    ]
    return [arg for arg in all_args_info if arg["name"] not in exclude_args]


# Initial filament data
initial_filament_data = {
    "Brand": ["Generic", "Generic", "Generic"],
    " Name": ["PLA Black", "PLA Grey", "PLA White"],
    " TD": [1.0, 1.0, 1.0],
    " Color": ["#000000", "#808080", "#FFFFFF"],
    " Owned": ["true", "true", "true"],  # ← add
}
initial_df = pd.DataFrame(initial_filament_data)

if os.path.exists(DEFAULT_MATERIALS_CSV):
    try:
        initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV)
        for col in ["Brand", " Name", " TD", " Color"]:
            if col not in initial_df.columns:
                initial_df[col] = None
        initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype(
            {" TD": float, " Color": str}
        )
    except Exception as e:
        print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
        initial_df = pd.DataFrame(initial_filament_data)
else:
    initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)


# Helper for creating an empty 10-tuple for error returns
def create_empty_error_outputs(log_message=""):
    return (
        log_message,  # progress_output
        None,  # final_image_preview
        gr.update(visible=False, interactive=False),  # ### ZIP: download_zip
    )


# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Autoforge Web UI")

    filament_df_state = gr.State(initial_df.copy())
    current_run_output_dir = gr.State(None)

    with gr.Tabs():
        with gr.TabItem("Filament Management"):
            gr.Markdown(
                'Manage your filament list. This list will be saved as a CSV and used by the Autoforge process. \n To remove a filament simply rightclick on any of the fields and select "Delete Row"'
            )
            with gr.Row():
                load_csv_button = gr.UploadButton(
                    "Load Filaments CSV", file_types=[".csv"]
                )
                save_csv_button = gr.Button("Save Current Filaments to CSV")
            filament_table = gr.DataFrame(
                value=ensure_required_cols(
                    initial_df.copy().rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    ),
                    in_display_space=True,
                ),
                headers=["Brand", "Name", "TD", "Color (Hex)"],
                datatype=["str", "str", "number", "str"],
                interactive=True,
                label="Filaments",
            )
            gr.Markdown("### Add New Filament")
            with gr.Row():
                new_brand = gr.Textbox(label="Brand")
                new_name = gr.Textbox(label="Name")
            with gr.Row():
                new_td = gr.Number(
                    label="TD (Transmission/Opacity)",
                    value=1.0,
                    minimum=0,
                    maximum=100,
                    step=0.1,
                )
                new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
            add_filament_button = gr.Button("Add Filament to Table")
            download_csv_trigger = gr.File(
                label="Download Filament CSV", visible=False, interactive=False
            )

            def update_filament_df_state_from_table(display_df):
                display_df = ensure_required_cols(display_df, in_display_space=True)

                # make sure every colour is hex
                if "Color (Hex)" in display_df.columns:
                    display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
                        rgba_to_hex
                    )

                script_df = display_df.rename(
                    columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
                )
                script_df = ensure_required_cols(script_df, in_display_space=False)
                filament_df_state.value = script_df

            def add_filament_to_table(current_display_df, brand, name, td, color_hex):
                if not brand or not name:
                    gr.Warning("Brand and Name cannot be empty.")
                    return current_display_df

                color_hex = rgba_to_hex(color_hex)  # <-- new line

                new_row = pd.DataFrame(
                    [{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
                )
                updated_display_df = pd.concat(
                    [current_display_df, new_row], ignore_index=True
                )
                update_filament_df_state_from_table(updated_display_df)
                return updated_display_df

            def load_filaments_from_csv_upload(file_obj):
                if file_obj is None:
                    current_script_df = filament_df_state.value
                    if current_script_df is not None and not current_script_df.empty:
                        return current_script_df.rename(
                            columns={
                                " Name": "Name",
                                " TD": "TD",
                                " Color": "Color (Hex)",
                            }
                        )
                    return initial_df.copy().rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    )
                try:
                    loaded_script_df = pd.read_csv(file_obj.name)
                    loaded_script_df = ensure_required_cols(
                        loaded_script_df, in_display_space=False
                    )
                    expected_cols = ["Brand", " Name", " TD", " Color"]
                    if not all(
                        col in loaded_script_df.columns for col in expected_cols
                    ):
                        gr.Error(
                            f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
                        )
                        current_script_df = filament_df_state.value
                        if (
                            current_script_df is not None
                            and not current_script_df.empty
                        ):
                            return current_script_df.rename(
                                columns={
                                    " Name": "Name",
                                    " TD": "TD",
                                    " Color": "Color (Hex)",
                                }
                            )
                        return initial_df.copy().rename(
                            columns={
                                " Name": "Name",
                                " TD": "TD",
                                " Color": "Color (Hex)",
                            }
                        )
                    filament_df_state.value = loaded_script_df.copy()
                    return loaded_script_df.rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    )
                except Exception as e:
                    gr.Error(f"Error loading CSV: {e}")
                    current_script_df = filament_df_state.value
                    if current_script_df is not None and not current_script_df.empty:
                        return current_script_df.rename(
                            columns={
                                " Name": "Name",
                                " TD": "TD",
                                " Color": "Color (Hex)",
                            }
                        )
                    return initial_df.copy().rename(
                        columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
                    )

            def save_filaments_to_file_for_download(current_script_df_from_state):
                if (
                    current_script_df_from_state is None
                    or current_script_df_from_state.empty
                ):
                    gr.Warning("Filament table is empty. Nothing to save.")
                    return None
                df_to_save = current_script_df_from_state.copy()
                required_cols = ["Brand", " Name", " TD", " Color"]
                if not all(col in df_to_save.columns for col in required_cols):
                    gr.Error(
                        f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
                    )
                    return None
                temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
                os.makedirs(temp_dir, exist_ok=True)
                temp_filament_csv_path = os.path.join(
                    temp_dir,
                    f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
                )
                try:
                    df_to_save.to_csv(temp_filament_csv_path, index=False)
                    gr.Info("Filaments prepared for download.")
                    return gr.File(
                        value=temp_filament_csv_path,
                        label="Download Filament CSV",
                        interactive=True,
                        visible=True,
                    )
                except Exception as e:
                    gr.Error(f"Error saving CSV for download: {e}")
                    return None

            filament_table.change(
                update_filament_df_state_from_table,
                inputs=[filament_table],
                outputs=None,
                queue=False,
            )
            add_filament_button.click(
                add_filament_to_table,
                inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
                outputs=[filament_table],
            )
            load_csv_button.upload(
                load_filaments_from_csv_upload,
                inputs=[load_csv_button],
                outputs=[filament_table],
            )
            save_csv_button.click(
                save_filaments_to_file_for_download,
                inputs=[filament_df_state],
                outputs=[download_csv_trigger],
            )

        with gr.TabItem("Run Autoforge"):
            accordion_params_dict = {}
            accordion_params_ordered_names = []

            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Input Image (Required)")
                    input_image_component = gr.Image(
                        type="filepath",
                        image_mode="RGBA",
                        label="Upload Image",
                        sources=["upload"],
                        interactive=True,
                    )
                with gr.Column(scale=2):
                    gr.Markdown("### Preview")
                    with gr.Accordion("Progress & Output", open=True):
                        final_image_preview = gr.Image(
                            label="Model Preview",
                            type="filepath",
                            interactive=False,
                        )
            with gr.Row():
                download_zip = gr.File(  # was visible=True
                    label="Download all results (.zip)",
                    interactive=True,
                    visible=False,
                )
            with gr.Row():
                with gr.Accordion("Adjust Autoforge Parameters", open=False):
                    args_for_accordion = get_script_args_info(
                        exclude_args=["--input_image"]
                    )

                    for arg in args_for_accordion:
                        label, info, default_val = (
                            f"{arg['name']}",
                            arg["help"],
                            arg.get("default"),
                        )
                        if arg["type"] == "number":
                            accordion_params_dict[arg["name"]] = gr.Number(
                                label=label,
                                value=default_val,
                                info=info,
                                minimum=arg.get("min"),
                                maximum=arg.get("max"),
                                step=arg.get(
                                    "step",
                                    0.001 if isinstance(default_val, float) else 1,
                                ),
                                precision=arg.get("precision", None),
                            )
                        elif arg["type"] == "slider":
                            accordion_params_dict[arg["name"]] = gr.Slider(
                                label=label,
                                value=default_val,
                                info=info,
                                minimum=arg.get("min", 0),
                                maximum=arg.get("max", 1),
                                step=arg.get("step", 0.01),
                            )
                        elif arg["type"] == "checkbox":
                            accordion_params_dict[arg["name"]] = gr.Checkbox(
                                label=label, value=default_val, info=info
                            )
                        elif arg["type"] == "colorpicker":
                            accordion_params_dict[arg["name"]] = gr.ColorPicker(
                                label=label, value=default_val, info=info
                            )
                        else:
                            accordion_params_dict[arg["name"]] = gr.Textbox(
                                label=label, value=str(default_val), info=info
                            )
                        accordion_params_ordered_names.append(arg["name"])

            run_button = gr.Button(
                "Run Autoforge Process",
                variant="primary",
                elem_id="run_button_full_width",
            )


            progress_output = gr.Textbox(
                label="Console Output",
                lines=15,
                autoscroll=True,
                show_copy_button=False,
            )

    # --- Backend Function for Running the Script ---
    def execute_autoforge_script(
        current_filaments_df_state_val, input_image_path, *accordion_param_values
    ):
        # 0. Validate Inputs
        if (
            not input_image_path
        ):  # Covers None and empty string from gr.Image(type="filepath")
            gr.Error("Input Image is required! Please upload an image.")
            return create_empty_error_outputs("Error: Input Image is required!")

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())
        run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
        os.makedirs(run_output_dir_val, exist_ok=True)
        current_run_output_dir.value = run_output_dir_val

        # 1. Save current filaments
        if (
            current_filaments_df_state_val is None
            or current_filaments_df_state_val.empty
        ):
            gr.Error("Filament table is empty. Please add filaments.")
            return create_empty_error_outputs("Error: Filament table is empty.")

        temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
        df_to_save = current_filaments_df_state_val.copy()
        required_cols = ["Brand", " Name", " TD", " Color"]
        missing_cols = [col for col in required_cols if col not in df_to_save.columns]
        if missing_cols:
            err_msg = (
                f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
            )
            gr.Error(err_msg)
            return create_empty_error_outputs(err_msg)
        try:
            df_to_save.to_csv(temp_filament_csv, index=False)
        except Exception as e:
            err_msg = f"Error saving temporary filament CSV: {e}"
            gr.Error(err_msg)
            return create_empty_error_outputs(err_msg)

        # 2. Construct command
        python_executable = sys.executable or "python"
        command = ["autoforge",]
        command.extend(["--csv_file", temp_filament_csv])
        command.extend(["--output_folder", run_output_dir_val])
        command.extend(["--disable_visualization_for_gradio","1"])

        base_filename = os.path.basename(input_image_path)
        script_input_image_path = os.path.join(run_output_dir_val, base_filename)
        try:
            img = Image.open(input_image_path)
            # decide where to store the image we pass to Autoforge
            base_no_ext, _ = os.path.splitext(os.path.basename(input_image_path))
            script_input_image_path = os.path.join(
                run_output_dir_val, f"{base_no_ext}.png"
            )

            if img.mode in ("RGBA", "LA") or (
                img.mode == "P" and "transparency" in img.info
            ):
                # the uploaded file has an alpha channel – save it as PNG
                img.save(script_input_image_path, format="PNG")
            else:
                # no alpha present – just copy the file in whatever format it was
                script_input_image_path = os.path.join(
                    run_output_dir_val, os.path.basename(input_image_path)
                )
                shutil.copy(input_image_path, script_input_image_path)

            command.extend(["--input_image", script_input_image_path])
        except Exception as e:
            err_msg = f"Error handling input image: {e}"
            gr.Error(err_msg)
            return create_empty_error_outputs(err_msg)

        param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
        for arg_name, arg_widget_val in param_dict.items():
            if arg_widget_val is None or arg_widget_val == "":
                arg_info_list = [
                    item for item in get_script_args_info() if item["name"] == arg_name
                ]  # get full list to check type
                if (
                    arg_info_list
                    and arg_info_list[0]["type"] == "checkbox"
                    and arg_widget_val is False
                ):
                    continue
                else:
                    continue
            if isinstance(arg_widget_val, bool):
                if arg_widget_val:
                    command.append(arg_name)
            else:
                command.extend([arg_name, str(arg_widget_val)])

        # 3. Run script
        log_output = (
            f"Starting Autoforge process at "
            f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
            f"Output directory: {run_output_dir_val}\n"
            f"Command: {' '.join(command)}\n\n"
        )

        yield create_empty_error_outputs(log_output)  # clear UI and show header

        process = subprocess.Popen(
            command,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
            bufsize=1,
            universal_newlines=True,
        )

        # ---- helper: read stdout in a background thread -------------------
        from threading import Thread
        from queue import Queue, Empty

        def _enqueue(pipe, q):
            """Forward stdout/stderr to a queue, emitting on both '\n' and '\r'."""
            buf = ""
            while True:
                ch = pipe.read(1)  # read a single character
                if ch == "":  # EOF
                    if buf:
                        q.put(buf)  # flush whatever is left
                    break
                buf += ch
                if ch in ("\n", "\r"):  # tqdm uses '\r'
                    q.put(buf)
                    buf = ""
            pipe.close()

        q_out = Queue()
        Thread(target=_enqueue, args=(process.stdout, q_out), daemon=True).start()
        Thread(target=_enqueue, args=(process.stderr, q_out), daemon=True).start()

        preview_mtime = 0
        last_push = 0

        def _maybe_new_preview():
            """
            If vis_temp.png has a newer mtime than last time, copy it to a
            stamped name (to defeat browser cache) and return that path.
            Otherwise return gr.update() so the image stays as-is.
            """
            from gradio import update  # local import for clarity

            nonlocal preview_mtime

            src = os.path.join(run_output_dir_val, "vis_temp.png")
            if not os.path.exists(src):
                return update()  # nothing new, keep old

            mtime = os.path.getmtime(src)
            if mtime <= preview_mtime:  # unchanged
                return update()  # β†’ no UI update

            return src  # β†’ refresh image

        # ---- main loop: poll every 0.5 s ----------------------------------
        while process.poll() is None or not q_out.empty():
            # drain whatever is waiting in stdout
            try:
                while True:
                    log_output += q_out.get_nowait()
            except Empty:
                pass

            now = time.time()
            if now - last_push >= 1.0:  # 500 ms tick
                current_preview = _maybe_new_preview()
                yield (
                    log_output,
                    current_preview,
                    gr.update(),  # ### ZIP PATCH: placeholder for zip widget
                )
                last_push = now

            time.sleep(0.05)  # keep CPU load low

        return_code = process.wait()
        log_output += (
            "\nAutoforge process completed successfully!"
            if return_code == 0
            else f"\nAutoforge process failed with exit code {return_code}."
        )

        # make sure we show the final preview (if any)
        final_preview = _maybe_new_preview() or os.path.join(
            run_output_dir_val, "final_model.png"
        )

        zip_base = os.path.join(
            run_output_dir_val, "autoforge_results"
        )  # ### ZIP PATCH
        zip_path = shutil.make_archive(zip_base, "zip", run_output_dir_val)

        # 4. Prepare output file paths
        png_path = os.path.join(run_output_dir_val, "final_model.png")
        stl_path = os.path.join(run_output_dir_val, "final_model.stl")
        txt_path = os.path.join(run_output_dir_val, "swap_instructions.txt")
        hfp_path = os.path.join(run_output_dir_val, "project_file.hfp")

        out_png = png_path if os.path.exists(png_path) else None
        out_stl = stl_path if os.path.exists(stl_path) else None
        out_txt = txt_path if os.path.exists(txt_path) else None
        out_hfp = hfp_path if os.path.exists(hfp_path) else None

        if out_png is None:
            log_output += "\nWarning: final_model.png not found in output."

        yield (
            log_output,  # progress_output
            out_png,  # final_image_preview
            gr.update(
                value=zip_path, visible=True, interactive=True
            ),  # ### ZIP PATCH: download_zip
        )

    run_inputs = [filament_df_state, input_image_component] + [
        accordion_params_dict[name] for name in accordion_params_ordered_names
    ]
    run_outputs = [
        progress_output,
        final_image_preview,
        download_zip,  # ### ZIP PATCH: only three outputs now
    ]

    run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)

css = """ #run_button_full_width { width: 100%; } """
if __name__ == "__main__":
    if not os.path.exists(DEFAULT_MATERIALS_CSV):
        print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
        try:
            initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
        except Exception as e:
            print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
    print("To run the UI, execute: python app.py")  # Corrected to python app.py
    demo.queue().launch(share=False)