Spaces:
Sleeping
Sleeping
import gradio as gr | |
def greet(name): | |
return "Hello " + name + "!!" | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
from peft import PeftModel, PeftConfig | |
# class InferenceFineTunning: | |
# def __init__(self, model_path): | |
# peft_model_id = f"hyang0503/{model_path}" | |
# config = PeftConfig.from_pretrained(peft_model_id) | |
# bnb_config = BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_compute_dtype=torch.bfloat16 | |
# ) | |
# self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto") | |
# self.model = PeftModel.from_pretrained(self.model, peft_model_id) | |
# # self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# self.tokenizer = AutoTokenizer.from_pretrained(peft_model_id) | |
# self.tokenizer.pad_token = self.tokenizer.eos_token | |
# self.model.eval() | |
# def generate(self, q): # 실습 노트북과 내용 다름 | |
# outputs = self.model.generate( | |
# **self.tokenizer( | |
# f"### 질문: {q}\n\n### 답변:", | |
# return_tensors='pt', | |
# return_token_type_ids=False | |
# ).to("cuda"), | |
# max_new_tokens=256, | |
# early_stopping=True, | |
# do_sample=True, | |
# eos_token_id=2, | |
# ) | |
# print(self.tokenizer.decode(outputs[0])) | |
# ifg = InferenceFineTunning("qlora-koalpaca") | |
# iface = gr.Interface(fn=ifg.generate, inputs="text", outputs="text") | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() |