Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,73 @@
|
|
1 |
-
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
import torch
|
7 |
-
|
|
|
8 |
from peft import PeftModel, PeftConfig
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# f"### 질문: {q}\n\n### 답변:",
|
32 |
-
# return_tensors='pt',
|
33 |
-
# return_token_type_ids=False
|
34 |
-
# ).to("cuda"),
|
35 |
-
# max_new_tokens=256,
|
36 |
-
# early_stopping=True,
|
37 |
-
# do_sample=True,
|
38 |
-
# eos_token_id=2,
|
39 |
-
# )
|
40 |
-
# print(self.tokenizer.decode(outputs[0]))
|
41 |
-
# ifg = InferenceFineTunning("qlora-koalpaca")
|
42 |
-
# iface = gr.Interface(fn=ifg.generate, inputs="text", outputs="text")
|
43 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
44 |
-
iface.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# def greet(name):
|
4 |
+
# return "Hello " + name + "!!"
|
5 |
+
|
6 |
+
# import torch
|
7 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
8 |
+
# from peft import PeftModel, PeftConfig
|
9 |
+
|
10 |
+
# # class InferenceFineTunning:
|
11 |
+
# # def __init__(self, model_path):
|
12 |
+
# # peft_model_id = f"hyang0503/{model_path}"
|
13 |
+
# # config = PeftConfig.from_pretrained(peft_model_id)
|
14 |
+
# # bnb_config = BitsAndBytesConfig(
|
15 |
+
# # load_in_4bit=True,
|
16 |
+
# # bnb_4bit_use_double_quant=True,
|
17 |
+
# # bnb_4bit_quant_type="nf4",
|
18 |
+
# # bnb_4bit_compute_dtype=torch.bfloat16
|
19 |
+
# # )
|
20 |
+
# # self.model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto")
|
21 |
+
# # self.model = PeftModel.from_pretrained(self.model, peft_model_id)
|
22 |
+
|
23 |
+
# # # self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
24 |
+
# # self.tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
25 |
+
# # self.tokenizer.pad_token = self.tokenizer.eos_token
|
26 |
+
# # self.model.eval()
|
27 |
+
|
28 |
+
# # def generate(self, q): # 실습 노트북과 내용 다름
|
29 |
+
# # outputs = self.model.generate(
|
30 |
+
# # **self.tokenizer(
|
31 |
+
# # f"### 질문: {q}\n\n### 답변:",
|
32 |
+
# # return_tensors='pt',
|
33 |
+
# # return_token_type_ids=False
|
34 |
+
# # ).to("cuda"),
|
35 |
+
# # max_new_tokens=256,
|
36 |
+
# # early_stopping=True,
|
37 |
+
# # do_sample=True,
|
38 |
+
# # eos_token_id=2,
|
39 |
+
# # )
|
40 |
+
# # print(self.tokenizer.decode(outputs[0]))
|
41 |
+
# # ifg = InferenceFineTunning("qlora-koalpaca")
|
42 |
+
# # iface = gr.Interface(fn=ifg.generate, inputs="text", outputs="text")
|
43 |
+
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
44 |
+
# iface.launch()
|
45 |
|
|
|
|
|
46 |
|
47 |
import torch
|
48 |
+
import gradio as gr
|
49 |
+
|
50 |
from peft import PeftModel, PeftConfig
|
51 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
|
53 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
54 |
+
peft_model_id = "hyang0503/qlora-koalpaca"
|
55 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
57 |
+
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
59 |
+
|
60 |
+
def generate(q):
|
61 |
+
inputs = tokenizer(f"### 질문: {q}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False)
|
62 |
+
outputs = model.generate(
|
63 |
+
**{k: v.to(device) for k, v in inputs.items()},
|
64 |
+
max_new_tokens=256,
|
65 |
+
do_sample=True,
|
66 |
+
eos_token_id=2,
|
67 |
+
)
|
68 |
+
result = tokenizer.decode(outputs[0])
|
69 |
+
answer_idx = result.find("### 답변:")
|
70 |
+
answer = result[answer_idx + 7:].strip()
|
71 |
+
return answer
|
72 |
+
|
73 |
+
gr.Interface(generate, "text", "text").launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|