File size: 14,192 Bytes
0e553a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import streamlit as st
import shelve
import docx2txt
import PyPDF2
import time  # Used to simulate typing effect
import nltk
import re
import os
import time  # already imported in your code
import requests
from dotenv import load_dotenv
import torch
from sentence_transformers import SentenceTransformer, util
nltk.download('punkt')
import hashlib
from nltk import sent_tokenize
nltk.download('punkt_tab')
from transformers import LEDTokenizer, LEDForConditionalGeneration
from transformers import pipeline
import asyncio
import sys
# Fix for RuntimeError: no running event loop on Windows
if sys.platform.startswith("win"):
    asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())


st.set_page_config(page_title="Legal Document Summarizer", layout="wide")

st.title("πŸ“„ Legal Document Summarizer (stage 4 )")

USER_AVATAR = "πŸ‘€"
BOT_AVATAR = "πŸ€–"

# Load chat history
def load_chat_history():
    with shelve.open("chat_history") as db:
        return db.get("messages", [])

# Save chat history
def save_chat_history(messages):
    with shelve.open("chat_history") as db:
        db["messages"] = messages

# Function to limit text preview to 500 words
def limit_text(text, word_limit=500):
    words = text.split()
    return " ".join(words[:word_limit]) + ("..." if len(words) > word_limit else "")


# CLEAN AND NORMALIZE TEXT


def clean_text(text):
    # Remove newlines and extra spaces
    text = text.replace('\r\n', ' ').replace('\n', ' ')
    text = re.sub(r'\s+', ' ', text)
    
    # Remove page number markers like "Page 1 of 10"
    text = re.sub(r'Page\s+\d+\s+of\s+\d+', '', text, flags=re.IGNORECASE)

    # Remove long dashed or underscored lines
    text = re.sub(r'[_]{5,}', '', text)   # Lines with underscores: _____
    text = re.sub(r'[-]{5,}', '', text)   # Lines with hyphens: -----
    
    # Remove long dotted separators
    text = re.sub(r'[.]{4,}', '', text)   # Dots like "......" or ".............."
    
    # Trim final leading/trailing whitespace
    text = text.strip()

    return text


#######################################################################################################################


# LOADING MODELS FOR DIVIDING TEXT INTO SECTIONS

# Load token from .env file
load_dotenv()
HF_API_TOKEN = os.getenv("HF_API_TOKEN")


# Load once at the top (cache for performance)
@st.cache_resource
def load_local_zero_shot_classifier():
    return pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")

local_classifier = load_local_zero_shot_classifier()


SECTION_LABELS = ["Facts", "Arguments", "Judgment", "Other"]

def classify_chunk(text):
    result = local_classifier(text, candidate_labels=SECTION_LABELS)
    return result["labels"][0]


# NEW: NLP-based sectioning using zero-shot classification
def section_by_zero_shot(text):
    sections = {"Facts": "", "Arguments": "", "Judgment": "", "Other": ""}
    sentences = sent_tokenize(text)
    chunk = ""

    for i, sent in enumerate(sentences):
        chunk += sent + " "
        if (i + 1) % 3 == 0 or i == len(sentences) - 1:
            label = classify_chunk(chunk.strip())
            print(f"πŸ”Ž Chunk: {chunk[:60]}...\nπŸ”– Predicted Label: {label}")
            # πŸ‘‡ Normalize label (title case and fallback)
            label = label.capitalize()
            if label not in sections:
                label = "Other"
            sections[label] += chunk + "\n"
            chunk = ""

    return sections

#######################################################################################################################



# EXTRACTING TEXT FROM UPLOADED FILES

# Function to extract text from uploaded file
def extract_text(file):
    if file.name.endswith(".pdf"):
        reader = PyPDF2.PdfReader(file)
        full_text = "\n".join(page.extract_text() or "" for page in reader.pages)
    elif file.name.endswith(".docx"):
        full_text = docx2txt.process(file)
    elif file.name.endswith(".txt"):
        full_text = file.read().decode("utf-8")
    else:
        return "Unsupported file type."
    
    return full_text  # Full text is needed for summarization


#######################################################################################################################

# EXTRACTIVE AND ABSTRACTIVE SUMMARIZATION


@st.cache_resource
def load_legalbert():
    return SentenceTransformer("nlpaueb/legal-bert-base-uncased")


legalbert_model = load_legalbert()

@st.cache_resource
def load_led():
    tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
    model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
    return tokenizer, model

tokenizer_led, model_led = load_led()


def legalbert_extractive_summary(text, top_ratio=0.2):
    sentences = sent_tokenize(text)
    top_k = max(3, int(len(sentences) * top_ratio))

    if len(sentences) <= top_k:
        return text

    # Embeddings & scoring
    sentence_embeddings = legalbert_model.encode(sentences, convert_to_tensor=True)
    doc_embedding = torch.mean(sentence_embeddings, dim=0)
    cosine_scores = util.pytorch_cos_sim(doc_embedding, sentence_embeddings)[0]
    top_results = torch.topk(cosine_scores, k=top_k)

    # Preserve original order
    selected_sentences = [sentences[i] for i in sorted(top_results.indices.tolist())]
    return " ".join(selected_sentences)



    # Add LED Abstractive Summarization


def led_abstractive_summary(text, max_length=512, min_length=100):
    inputs = tokenizer_led(
        text, return_tensors="pt", padding="max_length",
        truncation=True, max_length=4096
    )
    global_attention_mask = torch.zeros_like(inputs["input_ids"])
    global_attention_mask[:, 0] = 1

    outputs = model_led.generate(
        inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        global_attention_mask=global_attention_mask,
        max_length=max_length,
        min_length=min_length,
        num_beams=4,                      # Use beam search
        repetition_penalty=2.0,           # Penalize repetition
        length_penalty=1.0,
        early_stopping=True,
        no_repeat_ngram_size=4            # Prevent repeated phrases
    )

    return tokenizer_led.decode(outputs[0], skip_special_tokens=True)



def led_abstractive_summary_chunked(text, max_tokens=3000):
    sentences = sent_tokenize(text)
    current_chunk = ""
    chunks = []
    for sent in sentences:
        if len(tokenizer_led(current_chunk + sent)["input_ids"]) > max_tokens:
            chunks.append(current_chunk)
            current_chunk = sent
        else:
            current_chunk += " " + sent
    if current_chunk:
        chunks.append(current_chunk)

    summaries = []
    for chunk in chunks:
        summaries.append(led_abstractive_summary(chunk))  # Call your LED summary function here

    return " ".join(summaries)



def hybrid_summary_hierarchical(text, top_ratio=0.8):
    cleaned_text = clean_text(text)
    sections = section_by_zero_shot(cleaned_text)

    structured_summary = {}  # <-- hierarchical summary here

    for name, content in sections.items():
        if content.strip():
            # Extractive summary
            extractive = legalbert_extractive_summary(content, top_ratio)

            # Abstractive summary
            abstractive = led_abstractive_summary_chunked(extractive)

            # Store in dictionary (hierarchical structure)
            structured_summary[name] = {
                "extractive": extractive,
                "abstractive": abstractive
            }

    return structured_summary


#######################################################################################################################


# STREAMLIT APP INTERFACE CODE

# Initialize or load chat history
if "messages" not in st.session_state:
    st.session_state.messages = load_chat_history()

# Initialize last_uploaded if not set
if "last_uploaded" not in st.session_state:
    st.session_state.last_uploaded = None

# Sidebar with a button to delete chat history
with st.sidebar:
    st.subheader("βš™οΈ Options")
    if st.button("Delete Chat History"):
        st.session_state.messages = []
        st.session_state.last_uploaded = None
        save_chat_history([])

# Display chat messages with a typing effect
def display_with_typing_effect(text, speed=0.005):
    placeholder = st.empty()
    displayed_text = ""
    for char in text:
        displayed_text += char
        placeholder.markdown(displayed_text)
        time.sleep(speed)
    return displayed_text

# Show existing chat messages
for message in st.session_state.messages:
    avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
    with st.chat_message(message["role"], avatar=avatar):
        st.markdown(message["content"])


# Standard chat input field
prompt = st.chat_input("Type a message...")


# Place uploader before the chat so it's always visible
with st.container():
    st.subheader("πŸ“Ž Upload a Legal Document")
    uploaded_file = st.file_uploader("Upload a file (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
    reprocess_btn = st.button("πŸ”„ Reprocess Last Uploaded File")


# Hashing logic
def get_file_hash(file):
    file.seek(0)
    content = file.read()
    file.seek(0)
    return hashlib.md5(content).hexdigest()


##############################################################################################################

user_role = st.sidebar.selectbox(
    "🎭 Select Your Role for Custom Summary",
    ["General", "Judge", "Lawyer", "Student"]
)


def role_based_filter(section, summary, role):
    if role == "General":
        return summary
    
    filtered_summary = {
        "extractive": "",
        "abstractive": ""
    }

    if role == "Judge" and section in ["Judgment", "Facts"]:
        filtered_summary = summary
    elif role == "Lawyer" and section in ["Arguments", "Facts"]:
        filtered_summary = summary
    elif role == "Student" and section in ["Facts"]:
        filtered_summary = summary

    return filtered_summary



if uploaded_file:
    file_hash = get_file_hash(uploaded_file)
    
    # Check if file is new OR reprocess is triggered
    if file_hash != st.session_state.get("last_uploaded_hash") or reprocess_btn:

        start_time = time.time()  # Start the timer

        raw_text = extract_text(uploaded_file)
        
        summary_dict = hybrid_summary_hierarchical(raw_text)

        st.session_state.messages.append({
            "role": "user",
            "content": f"πŸ“€ Uploaded **{uploaded_file.name}**"
        })    
      

        # Start building preview
        preview_text = f"🧾 **Hybrid Summary of {uploaded_file.name}:**\n\n"

        
        for section in ["Facts", "Arguments", "Judgment", "Other"]:
            if section in summary_dict:

                filtered = role_based_filter(section, summary_dict[section], user_role)

                extractive = filtered.get("extractive", "").strip()
                abstractive = filtered.get("abstractive", "").strip()

                if not extractive and not abstractive:
                    continue  # Skip if empty after filtering

                preview_text += f"### πŸ“˜ {section} Section\n"
                preview_text += f"πŸ“Œ **Extractive Summary:**\n{extractive if extractive else '_No content extracted._'}\n\n"
                preview_text += f"πŸ” **Abstractive Summary:**\n{abstractive if abstractive else '_No summary generated._'}\n\n"


        # Display in chat
        with st.chat_message("assistant", avatar=BOT_AVATAR):
            display_with_typing_effect(clean_text(preview_text), speed=0)

        # Show processing time after the summary
        processing_time = round(time.time() - start_time, 2)
        st.session_state["last_response_time"] = processing_time

        if "last_response_time" in st.session_state:
            st.info(f"⏱️ Response generated in **{st.session_state['last_response_time']} seconds**.")

        st.session_state.messages.append({
            "role": "assistant",
            "content": clean_text(preview_text)
        })

        # Save this file hash only if it’s a new upload (avoid overwriting during reprocess)
        if not reprocess_btn:
            st.session_state.last_uploaded_hash = file_hash

        save_chat_history(st.session_state.messages)

        st.rerun()


# Handle chat input and return hybrid summary
if prompt:
    raw_text = prompt
    start_time = time.time() 

    summary_dict = hybrid_summary_hierarchical(raw_text)
    
    st.session_state.messages.append({
        "role": "user",
        "content": prompt
    })

    # Start building preview
    preview_text = f"🧾 **Hybrid Summary of {uploaded_file.name}:**\n\n"

    for section in ["Facts", "Arguments", "Judgment", "Other"]:
        if section in summary_dict:
            
            filtered = role_based_filter(section, summary_dict[section], user_role)

            extractive = filtered.get("extractive", "").strip()
            abstractive = filtered.get("abstractive", "").strip()

            if not extractive and not abstractive:
                continue  # Skip if empty after filtering

            preview_text += f"### πŸ“˜ {section} Section\n"
            preview_text += f"πŸ“Œ **Extractive Summary:**\n{extractive if extractive else '_No content extracted._'}\n\n"
            preview_text += f"πŸ” **Abstractive Summary:**\n{abstractive if abstractive else '_No summary generated._'}\n\n"


    # Display in chat
    with st.chat_message("assistant", avatar=BOT_AVATAR):
        display_with_typing_effect(clean_text(preview_text), speed=0)

    # Show processing time after the summary
    processing_time = round(time.time() - start_time, 2)
    st.session_state["last_response_time"] = processing_time

    if "last_response_time" in st.session_state:
        st.info(f"⏱️ Response generated in **{st.session_state['last_response_time']} seconds**.")

    st.session_state.messages.append({
        "role": "assistant",
        "content": clean_text(preview_text)
    })
    
    save_chat_history(st.session_state.messages)

    st.rerun()