tlsgy
commited on
Commit
·
56bf50e
1
Parent(s):
72301a1
ff
Browse files- app.py +93 -0
- example_images/img1.jpg +0 -0
- example_images/img2.jpg +0 -0
- example_images/img3.jpg +0 -0
- example_images/img4.jpg +0 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
|
8 |
+
# Path to the pre-trained sentiment analysis model
|
9 |
+
model_path = "saved_model"
|
10 |
+
|
11 |
+
# Load the pre-trained segmentation model
|
12 |
+
segmentation_model = tf.keras.models.load_model(model_path)
|
13 |
+
|
14 |
+
# Target image shape
|
15 |
+
TARGET_SHAPE = (256, 256)
|
16 |
+
|
17 |
+
# Define image segmentation function
|
18 |
+
def segment_image(img:np.ndarray):
|
19 |
+
# Original image shape
|
20 |
+
ORIGINAL_SHAPE = img.shape
|
21 |
+
|
22 |
+
# Check if the image is RGB and convert if not
|
23 |
+
if len(ORIGINAL_SHAPE) == 2:
|
24 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
25 |
+
|
26 |
+
# Resize the image to TARGET_SHAPE
|
27 |
+
img = cv2.resize(img, TARGET_SHAPE)
|
28 |
+
|
29 |
+
# Add a batch dimension
|
30 |
+
img = np.expand_dims(img, axis=0)
|
31 |
+
|
32 |
+
# Predict the segmentation mask
|
33 |
+
mask = segmentation_model.predict(img)
|
34 |
+
|
35 |
+
# Remove the batch dimension
|
36 |
+
mask = np.squeeze(mask, axis=0)
|
37 |
+
|
38 |
+
# Convert to labels
|
39 |
+
mask = np.argmax(mask, axis=-1)
|
40 |
+
|
41 |
+
# Convert to uint8
|
42 |
+
mask = mask.astype(np.uint8)
|
43 |
+
|
44 |
+
# Resize to original image shape
|
45 |
+
mask = cv2.resize(mask, (ORIGINAL_SHAPE[1], ORIGINAL_SHAPE[0]))
|
46 |
+
|
47 |
+
return mask
|
48 |
+
|
49 |
+
def overlay_mask(img, mask, alpha=0.5):
|
50 |
+
# Define color mapping
|
51 |
+
colors = {
|
52 |
+
0: [255, 0, 0], # Class 0 - Red
|
53 |
+
1: [0, 255, 0], # Class 1 - Green
|
54 |
+
2: [0, 0, 255] # Class 2 - Blue
|
55 |
+
# Add more colors for additional classes if needed
|
56 |
+
}
|
57 |
+
|
58 |
+
# Create a blank colored overlay image
|
59 |
+
overlay = np.zeros_like(img)
|
60 |
+
|
61 |
+
# Map each mask value to the corresponding color
|
62 |
+
for class_id, color in colors.items():
|
63 |
+
overlay[mask == class_id] = color
|
64 |
+
|
65 |
+
# Blend the overlay with the original image
|
66 |
+
output = cv2.addWeighted(img, 1 - alpha, overlay, alpha, 0)
|
67 |
+
|
68 |
+
return output
|
69 |
+
|
70 |
+
|
71 |
+
# The main function
|
72 |
+
def transform(img):
|
73 |
+
mask=segment_image(img)
|
74 |
+
blended_img = overlay_mask(img, mask)
|
75 |
+
return blended_img
|
76 |
+
|
77 |
+
|
78 |
+
# Create the Gradio app
|
79 |
+
app = gr.Interface(
|
80 |
+
fn=transform,
|
81 |
+
inputs=gr.Image(label="Input Image"),
|
82 |
+
outputs=gr.Image(label="Image with Segmentation Overlay"),
|
83 |
+
title="Image Segmentation on Pet Images",
|
84 |
+
description="Segment image of a pet animal into three classes: background, pet, and boundary.",
|
85 |
+
examples=[
|
86 |
+
"example_images/img1.jpg",
|
87 |
+
"example_images/img2.jpg",
|
88 |
+
"example_images/img3.jpg"
|
89 |
+
]
|
90 |
+
)
|
91 |
+
|
92 |
+
# Run the app
|
93 |
+
app.launch()
|
example_images/img1.jpg
ADDED
![]() |
example_images/img2.jpg
ADDED
![]() |
example_images/img3.jpg
ADDED
![]() |
example_images/img4.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
gradio
|
3 |
+
opencv-python
|