Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,793 Bytes
0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 06f0278 8ccf632 02dee9c 8ccf632 06f0278 8ccf632 76d8871 0dd76b1 54192f0 0dd76b1 8ccf632 0dd76b1 8ccf632 06f0278 8ccf632 0dd76b1 8ccf632 e2944a6 8ccf632 0dd76b1 02dee9c 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 b213a9c 0dd76b1 b213a9c ceb48e8 02dee9c b213a9c 0dd76b1 8ccf632 b213a9c 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderTiny, DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=75)
def infer(
prompt: str,
seed: int = 42,
randomize_seed: bool = False,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3.5,
num_inference_steps: int = 28,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> tuple[PIL.Image.Image, int]:
"""Generate an image from a prompt using the Flux.1 [dev] model.
Args:
prompt: The prompt to generate an image from.
seed: The seed to use for the image generation. Defaults to 42.
randomize_seed: Whether to randomize the seed. Defaults to False.
width: The width of the image. Defaults to 1024.
height: The height of the image. Defaults to 1024.
guidance_scale: The guidance scale to use for the image generation. Defaults to 3.5.
num_inference_steps: The number of inference steps to use for the image generation. Defaults to 28.
progress: The progress bar to use for the image generation. Defaults to a progress bar that tracks the tqdm progress.
Returns:
A tuple containing the generated image and the seed.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED) # noqa: S311
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
submit_btn=True,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=prompt,
outputs=[result, seed],
cache_examples=True,
cache_mode="lazy",
)
prompt.submit(
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
|