File size: 4,793 Bytes
0dd76b1
 
8ccf632
 
0dd76b1
8ccf632
 
0dd76b1
06f0278
 
8ccf632
 
02dee9c
 
 
8ccf632
06f0278
8ccf632
76d8871
 
0dd76b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54192f0
0dd76b1
8ccf632
0dd76b1
 
 
 
 
 
 
 
 
 
 
 
8ccf632
06f0278
 
 
8ccf632
 
0dd76b1
8ccf632
 
e2944a6
8ccf632
 
 
 
 
0dd76b1
 
02dee9c
 
0dd76b1
8ccf632
 
 
 
 
 
0dd76b1
8ccf632
 
0dd76b1
8ccf632
 
 
 
 
 
 
 
 
0dd76b1
8ccf632
 
 
 
 
 
 
 
0dd76b1
8ccf632
 
 
 
 
 
 
b213a9c
0dd76b1
b213a9c
 
 
 
ceb48e8
02dee9c
b213a9c
0dd76b1
8ccf632
 
 
 
 
b213a9c
8ccf632
0dd76b1
8ccf632
0dd76b1
 
 
 
 
 
8ccf632
 
0dd76b1
 
 
 
8ccf632
 
0dd76b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderTiny, DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048


@spaces.GPU(duration=75)
def infer(
    prompt: str,
    seed: int = 42,
    randomize_seed: bool = False,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3.5,
    num_inference_steps: int = 28,
    progress: gr.Progress = gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
) -> tuple[PIL.Image.Image, int]:
    """Generate an image from a prompt using the Flux.1 [dev] model.

    Args:
        prompt: The prompt to generate an image from.
        seed: The seed to use for the image generation. Defaults to 42.
        randomize_seed: Whether to randomize the seed. Defaults to False.
        width: The width of the image. Defaults to 1024.
        height: The height of the image. Defaults to 1024.
        guidance_scale: The guidance scale to use for the image generation. Defaults to 3.5.
        num_inference_steps: The number of inference steps to use for the image generation. Defaults to 28.
        progress: The progress bar to use for the image generation. Defaults to a progress bar that tracks the tqdm progress.

    Returns:
        A tuple containing the generated image and the seed.
    """
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)  # noqa: S311
    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale,
    ).images[0]
    return image, seed


examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                submit_btn=True,
            )
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=prompt,
            outputs=[result, seed],
            cache_examples=True,
            cache_mode="lazy",
        )

    prompt.submit(
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)