Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,182 Bytes
0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 06f0278 8ccf632 02dee9c 8ccf632 06f0278 8ccf632 76d8871 0dd76b1 6a99664 0dd76b1 b2a74a5 0dd76b1 b2a74a5 0dd76b1 b2a74a5 0dd76b1 54192f0 0dd76b1 8ccf632 0dd76b1 1d2a6dd 8ccf632 06f0278 8ccf632 0dd76b1 8ccf632 e2944a6 8ccf632 0dd76b1 02dee9c 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 8ccf632 b213a9c 0dd76b1 b213a9c ceb48e8 02dee9c b213a9c 0dd76b1 8ccf632 b213a9c 8ccf632 0dd76b1 8ccf632 0dd76b1 1d2a6dd 0dd76b1 8ccf632 0dd76b1 8ccf632 0dd76b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderTiny, DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=75)
def infer(
prompt: str,
seed: int,
randomize_seed: bool,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3.5,
num_inference_steps: int = 28,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> tuple[PIL.Image.Image, int]:
"""Generate an image from a text prompt using the FLUX.1 [dev] model.
Note:
- Prompts must be written in English. Other languages are not currently supported.
- Prompts are limited to 77 tokens due to CLIP tokenizer constraints.
Args:
prompt: A text prompt in English to guide the image generation. Limited to 77 tokens.
seed: The seed value used for reproducible image generation.
randomize_seed: If True, overrides the seed with a randomly generated one.
width: Width of the output image in pixels. Defaults to 1024.
height: Height of the output image in pixels. Defaults to 1024.
guidance_scale: Controls how strongly the model follows the prompt.
Higher values lead to images more closely aligned with the prompt. Defaults to 3.5.
num_inference_steps: Number of denoising steps during generation. Higher values can improve quality. Defaults to 28.
progress: (Internal) Progress tracker for UI integration; should not be manually set by users.
Returns:
A tuple containing the generated image and the seed value used.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED) # noqa: S311
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
).images[0]
return image, seed
def run_example(prompt: str) -> tuple[PIL.Image.Image, int]:
return infer(prompt, seed=42, randomize_seed=False)
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
submit_btn=True,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=run_example,
inputs=prompt,
outputs=[result, seed],
)
prompt.submit(
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
|