i0switch's picture
Update app.py
4fd7fe3 verified
raw
history blame
11.4 kB
# app.py — InstantID × Beautiful Realistic Asians v7(ZeroGPU 対応フル版)
# 2025-06-22
##############################################################################
# 0. 旧 API → 新 API 互換パッチ(必ず diffusers より前に実行)
##############################################################################
from huggingface_hub import hf_hub_download
import huggingface_hub as _hf_hub
# diffusers-0.27 が import する cached_download() を v0.28+ でも使えるように別名定義
if not hasattr(_hf_hub, "cached_download"):
_hf_hub.cached_download = hf_hub_download
##############################################################################
# 1. 標準ライブラリ & 外部ライブラリ
##############################################################################
import os, io, base64, subprocess, traceback
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import gradio as gr
import spaces
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from PIL import Image
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
AutoencoderKL,
)
from diffusers.loaders import AttnProcsLayers
from insightface.app import FaceAnalysis
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
##############################################################################
# 2. キャッシュ/永続ディレクトリ
##############################################################################
PERSIST_BASE = Path("/data")
CACHE_ROOT = (
PERSIST_BASE / "instantid_cache"
if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
else Path.home() / ".cache" / "instantid_cache"
)
MODELS_DIR = CACHE_ROOT / "models"
LORA_DIR = CACHE_ROOT / "lora"
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
for _p in (MODELS_DIR, LORA_DIR, UPSCALE_DIR):
_p.mkdir(parents=True, exist_ok=True)
##############################################################################
# 3. モデル URL 一覧
##############################################################################
BRA_V7_URL = (
"https://huggingface.co/i0switch-assets/Beautiful_Realistic_Asians_v7/"
"resolve/main/beautiful_realistic_asians_v7_fp16.safetensors"
)
IP_ADAPTER_BIN_URL = (
"https://huggingface.co/h94/IP-Adapter/"
"resolve/main/ip-adapter-plus-face_sd15.bin"
)
IP_ADAPTER_LORA_URL = (
"https://huggingface.co/h94/IP-Adapter-FaceID/"
"resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors"
)
REALESRGAN_URL = (
"https://huggingface.co/aimagelab/realesrgan/"
"resolve/main/RealESRGAN_x4plus.pth"
)
##############################################################################
# 4. ユーティリティ:堅牢ダウンロード
##############################################################################
def download(url: str, dst: Path, attempts: int = 2):
if dst.exists():
return dst
for i in range(1, attempts + 1):
try:
subprocess.check_call(["curl", "-L", "-o", str(dst), url])
return dst
except subprocess.CalledProcessError:
print(f"[DL] Retry {i}/{attempts} failed: {url}")
load_file_from_url(url=url, model_dir=str(dst.parent), file_name=dst.name)
return dst
##############################################################################
# 5. グローバル(lazy-load される)
##############################################################################
pipe: Optional[StableDiffusionControlNetPipeline] = None
face_analyser: Optional[FaceAnalysis] = None
upsampler: Optional[RealESRGANer] = None
##############################################################################
# 6. パイプライン初期化
##############################################################################
def initialize_pipelines():
"""最初の推論時に一度だけ呼び出す"""
global pipe, face_analyser, upsampler
if pipe is not None:
return
print("[INIT] Downloading model assets …")
# (1) ベースモデル & IP-Adapter
bra_ckpt = download(BRA_V7_URL, MODELS_DIR / "bra_v7.safetensors")
ip_bin = download(IP_ADAPTER_BIN_URL, MODELS_DIR / "ip_adapter.bin")
ip_lora = download(IP_ADAPTER_LORA_URL, LORA_DIR / "ip_adapter_faceid.lora")
# (2) ControlNet (InstantID)
controlnet = ControlNetModel.from_pretrained(
"InstantID/ControlNet-Mediapipe-Face",
torch_dtype=torch.float16,
cache_dir=str(MODELS_DIR),
)
# (3) Diffusers Pipeline
pipe_tmp = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
vae=AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16
),
torch_dtype=torch.float16,
cache_dir=str(MODELS_DIR),
safety_checker=None,
)
pipe_tmp.scheduler = DPMSolverMultistepScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="scheduler",
cache_dir=str(MODELS_DIR),
)
# IP-Adapter:LoRA を適用
pipe_tmp.load_ip_adapter(ip_bin)
ip_layers = AttnProcsLayers(pipe_tmp.unet.attn_processors)
ip_layers.load_lora_weights(
ip_lora, adapter_name="ip_faceid", safe_load=True
)
pipe_tmp.set_adapters(["ip_faceid"], adapter_weights=[0.6])
pipe_tmp.to("cuda")
pipe = pipe_tmp
# (4) InsightFace
face_analyser = FaceAnalysis(
name="buffalo_l", root=str(MODELS_DIR), providers=["CUDAExecutionProvider"]
)
face_analyser.prepare(ctx_id=0, det_size=(640, 640))
# (5) Real-ESRGAN
esrgan_ckpt = download(REALESRGAN_URL, UPSCALE_DIR / "realesrgan_x4plus.pth")
upsampler = RealESRGANer(
scale=4,
model_path=str(esrgan_ckpt),
half=True,
tile=512,
tile_pad=10,
pre_pad=0,
gpu_id=0,
)
print("[INIT] Pipelines ready.")
##############################################################################
# 7. プロンプトテンプレ
##############################################################################
BASE_PROMPT = (
"(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k, "
"cinematic lighting, textured skin, "
)
NEG_PROMPT = (
"verybadimagenegative_v1.3, ng_deepnegative_v1_75t, "
"(worst quality:2), (low quality:2), lowres, blurry, bad anatomy, "
"bad hands, extra digits, watermark, signature"
)
##############################################################################
# 8. 生成関数(GPU を掴む)
##############################################################################
@spaces.GPU(duration=60)
def generate_core(
face_img: Image.Image,
subject: str,
add_prompt: str = "",
add_neg: str = "",
cfg: float = 7.5,
ip_scale: float = 0.6,
steps: int = 30,
w: int = 768,
h: int = 768,
upscale: bool = False,
up_factor: int = 4,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
try:
if pipe is None:
initialize_pipelines()
np_face = np.array(face_img)
faces = face_analyser.get(np_face)
if len(faces) == 0:
raise ValueError("顔が検出できませんでした。別の画像でお試しください。")
pipe.set_adapters(["ip_faceid"], adapter_weights=[ip_scale])
prompt = BASE_PROMPT + subject + ", " + add_prompt
negative = NEG_PROMPT + ", " + add_neg
result = pipe(
prompt=prompt,
negative_prompt=negative,
num_inference_steps=int(steps),
guidance_scale=float(cfg),
image=face_img,
control_image=None,
width=int(w),
height=int(h),
).images[0]
if upscale and upsampler is not None:
upsampler.scale = 4 if up_factor == 4 else 8
result, _ = upsampler.enhance(np.array(result))
result = Image.fromarray(result)
return result
except Exception as e:
traceback.print_exc()
raise e
##############################################################################
# 9. Gradio UI
##############################################################################
with gr.Blocks(title="InstantID × BRA v7 (ZeroGPU)") as demo:
gr.Markdown("## InstantID × Beautiful Realistic Asians v7")
with gr.Row():
face_img = gr.Image(type="pil", label="Face ID", sources=["upload"])
subject = gr.Textbox(
label="被写体説明(例: 30代日本人女性、黒髪セミロング)", interactive=True
)
add_prompt = gr.Textbox(label="追加プロンプト", interactive=True)
add_neg = gr.Textbox(label="追加ネガティブ", interactive=True)
with gr.Row():
cfg = gr.Slider(1, 20, value=7.5, step=0.5, label="CFG Scale")
ip_scale = gr.Slider(0.1, 1.0, value=0.6, step=0.05, label="IP-Adapter Weight")
with gr.Row():
steps = gr.Slider(10, 50, value=30, step=1, label="Steps")
w = gr.Slider(512, 1024, value=768, step=64, label="Width")
h = gr.Slider(512, 1024, value=768, step=64, label="Height")
with gr.Row():
upscale = gr.Checkbox(label="Real-ESRGAN Upscale", value=False)
up_factor = gr.Radio([4, 8], value=4, label="Upscale Factor")
run_btn = gr.Button("Generate")
output_img = gr.Image(type="pil", label="Result")
run_btn.click(
fn=generate_core,
inputs=[
face_img,
subject,
add_prompt,
add_neg,
cfg,
ip_scale,
steps,
w,
h,
upscale,
up_factor,
],
outputs=output_img,
show_progress=True,
)
##############################################################################
# 10. FastAPI エンドポイント
##############################################################################
app = FastAPI()
@app.post("/api/generate")
async def api_generate(
subject: str = Form(...),
cfg: float = Form(7.5),
steps: int = Form(30),
ip_scale: float = Form(0.6),
w: int = Form(768),
h: int = Form(768),
file: UploadFile = File(...),
):
try:
img_bytes = await file.read()
pil = Image.open(io.BytesIO(img_bytes)).convert("RGB")
res = generate_core(
face_img=pil,
subject=subject,
add_prompt="",
add_neg="",
cfg=cfg,
ip_scale=ip_scale,
steps=steps,
w=w,
h=h,
upscale=False,
up_factor=4,
)
buf = io.BytesIO()
res.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
return {"image": f"data:image/png;base64,{b64}"}
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
##############################################################################
# 11. Launch(Gradio が自動で Uvicorn を立ち上げる)
##############################################################################
demo.queue(default_concurrency_limit=2).launch(share=False)