Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ mod.rgb_to_grayscale = F.rgb_to_grayscale
|
|
13 |
sys.modules["torchvision.transforms.functional_tensor"] = mod
|
14 |
# ---------------------------------------------------------------------------
|
15 |
|
16 |
-
|
17 |
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
|
18 |
from pathlib import Path
|
19 |
from PIL import Image
|
@@ -128,16 +127,16 @@ face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=provid
|
|
128 |
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
|
129 |
|
130 |
# ControlNet + SD γγ€γγ©γ€γ³
|
131 |
-
controlnet = ControlNetModel.from_pretrained(
|
132 |
-
"InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype
|
133 |
-
)
|
134 |
pipe = StableDiffusionPipeline.from_single_file(
|
135 |
BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
|
136 |
)
|
137 |
pipe.vae = AutoencoderKL.from_pretrained(
|
138 |
"stabilityai/sd-vae-ft-mse", torch_dtype=dtype
|
139 |
).to(device)
|
140 |
-
pipe.controlnet = controlnet
|
141 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
142 |
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
|
143 |
)
|
@@ -185,12 +184,9 @@ except Exception as e:
|
|
185 |
# 4. γγγ³γγ & ηζι’ζ°
|
186 |
##############################################################################
|
187 |
BASE_PROMPT = (
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"
|
191 |
-
"textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n"
|
192 |
-
"<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n"
|
193 |
-
"(aesthetic:1.1), (cinematic:0.8)"
|
194 |
)
|
195 |
NEG_PROMPT = (
|
196 |
"ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, "
|
@@ -221,8 +217,8 @@ def generate(
|
|
221 |
prompt=prompt,
|
222 |
negative_prompt=neg,
|
223 |
ip_adapter_image=img_in,
|
224 |
-
image=img_in,
|
225 |
-
controlnet_conditioning_scale=0.9,
|
226 |
num_inference_steps=int(steps) + 5,
|
227 |
guidance_scale=cfg,
|
228 |
width=int(w),
|
|
|
13 |
sys.modules["torchvision.transforms.functional_tensor"] = mod
|
14 |
# ---------------------------------------------------------------------------
|
15 |
|
|
|
16 |
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
|
17 |
from pathlib import Path
|
18 |
from PIL import Image
|
|
|
127 |
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
|
128 |
|
129 |
# ControlNet + SD γγ€γγ©γ€γ³
|
130 |
+
#controlnet = ControlNetModel.from_pretrained(
|
131 |
+
# "InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype
|
132 |
+
#)
|
133 |
pipe = StableDiffusionPipeline.from_single_file(
|
134 |
BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
|
135 |
)
|
136 |
pipe.vae = AutoencoderKL.from_pretrained(
|
137 |
"stabilityai/sd-vae-ft-mse", torch_dtype=dtype
|
138 |
).to(device)
|
139 |
+
#pipe.controlnet = controlnet
|
140 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
141 |
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
|
142 |
)
|
|
|
184 |
# 4. γγγ³γγ & ηζι’ζ°
|
185 |
##############################################################################
|
186 |
BASE_PROMPT = (
|
187 |
+
"masterpiece, ultra-realistic photo of {subject}, "
|
188 |
+
"cinematic lighting, shallow depth of field, textured skin, "
|
189 |
+
"Canon EOS R5 85 mm f/1.4, <lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>"
|
|
|
|
|
|
|
190 |
)
|
191 |
NEG_PROMPT = (
|
192 |
"ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, "
|
|
|
217 |
prompt=prompt,
|
218 |
negative_prompt=neg,
|
219 |
ip_adapter_image=img_in,
|
220 |
+
#image=img_in,
|
221 |
+
#controlnet_conditioning_scale=0.9,
|
222 |
num_inference_steps=int(steps) + 5,
|
223 |
guidance_scale=cfg,
|
224 |
width=int(w),
|