Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,31 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
* **import spaces を最初に**して ZeroGPU パッチを確実に適用。
|
6 |
-
* グローバル領域では CPU でモデルをロードし、CUDA への移動は
|
7 |
-
`@spaces.GPU` 関数内で一度だけ実行。
|
8 |
-
* `.to("cuda")` や `torch.cuda.*` を関数外に置かないことで
|
9 |
-
`RuntimeError: No CUDA GPUs are available` を回避。
|
10 |
"""
|
11 |
-
|
12 |
-
# ---------------------------------------------------------------------------
|
13 |
-
# 0. 依存ライブラリの読み込み (ZeroGPU パッチ → PyTorch の順)
|
14 |
-
# ---------------------------------------------------------------------------
|
15 |
-
import spaces # ⭐ ZeroGPU は torch より前に必須
|
16 |
-
|
17 |
-
# --- ★ Monkey‑Patch: torchvision 0.17+ で消えた functional_tensor を補完 ---
|
18 |
import types, sys
|
19 |
from torchvision.transforms import functional as F
|
20 |
|
21 |
mod = types.ModuleType("torchvision.transforms.functional_tensor")
|
|
|
22 |
mod.rgb_to_grayscale = F.rgb_to_grayscale
|
23 |
sys.modules["torchvision.transforms.functional_tensor"] = mod
|
24 |
# ---------------------------------------------------------------------------
|
25 |
|
26 |
-
import os, subprocess, cv2, torch, gradio as gr, numpy as np
|
27 |
from pathlib import Path
|
28 |
from PIL import Image
|
29 |
from diffusers import (
|
30 |
-
StableDiffusionPipeline,
|
31 |
-
|
32 |
-
DPMSolverMultistepScheduler,
|
33 |
-
AutoencoderKL,
|
34 |
)
|
35 |
from compel import Compel
|
36 |
from insightface.app import FaceAnalysis
|
37 |
|
38 |
-
|
39 |
-
#
|
40 |
-
|
41 |
PERSIST_BASE = Path("/data")
|
42 |
CACHE_ROOT = (
|
43 |
PERSIST_BASE / "instantid_cache"
|
@@ -53,7 +41,6 @@ UPSCALE_DIR = CACHE_ROOT / "realesrgan"
|
|
53 |
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
|
54 |
p.mkdir(parents=True, exist_ok=True)
|
55 |
|
56 |
-
|
57 |
def dl(url: str, dst: Path, attempts: int = 2):
|
58 |
"""wget + リトライの簡易ダウンローダ"""
|
59 |
if dst.exists():
|
@@ -64,26 +51,26 @@ def dl(url: str, dst: Path, attempts: int = 2):
|
|
64 |
return
|
65 |
raise RuntimeError(f"download failed → {url}")
|
66 |
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
print("— asset check —")
|
71 |
|
72 |
-
#
|
73 |
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
74 |
dl(
|
75 |
"https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
76 |
BASE_CKPT,
|
77 |
)
|
78 |
|
79 |
-
#
|
80 |
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
81 |
dl(
|
82 |
"https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors",
|
83 |
LORA_FILE,
|
84 |
)
|
85 |
|
86 |
-
#
|
87 |
EMB_URLS = {
|
88 |
"ng_deepnegative_v1_75t.pt": [
|
89 |
"https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
|
@@ -111,7 +98,7 @@ for fname, urls in EMB_URLS.items():
|
|
111 |
if idx == len(urls): raise
|
112 |
print(" ↳ fallback URL …")
|
113 |
|
114 |
-
#
|
115 |
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
|
116 |
RRG_URLS = [
|
117 |
"https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
|
@@ -125,71 +112,85 @@ for idx, link in enumerate(RRG_URLS, 1):
|
|
125 |
if idx == len(RRG_URLS): raise
|
126 |
print(" ↳ fallback URL …")
|
127 |
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
137 |
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
138 |
-
face_app.prepare(ctx_id
|
139 |
|
140 |
-
#
|
|
|
|
|
|
|
141 |
pipe = StableDiffusionPipeline.from_single_file(
|
142 |
BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
|
143 |
)
|
144 |
pipe.vae = AutoencoderKL.from_pretrained(
|
145 |
"stabilityai/sd-vae-ft-mse", torch_dtype=dtype
|
146 |
-
)
|
|
|
147 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
148 |
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
|
149 |
)
|
|
|
|
|
150 |
pipe.load_ip_adapter(
|
151 |
-
"h94/IP-Adapter",
|
152 |
-
subfolder="models",
|
153 |
weight_name="ip-adapter-plus-face_sd15.bin",
|
154 |
)
|
|
|
|
|
|
|
155 |
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
156 |
pipe.set_ip_adapter_scale(0.65)
|
157 |
|
158 |
-
# textual inversion
|
159 |
for emb in EMB_DIR.glob("*.*"):
|
160 |
try:
|
161 |
pipe.load_textual_inversion(emb, token=emb.stem)
|
162 |
print("emb loaded →", emb.stem)
|
163 |
except Exception:
|
164 |
print("emb skip →", emb.name)
|
|
|
165 |
|
166 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
try:
|
168 |
from basicsr.archs.rrdb_arch import RRDBNet
|
169 |
try:
|
170 |
from realesrgan import RealESRGAN
|
171 |
except ImportError:
|
172 |
from realesrgan import RealESRGANer as RealESRGAN
|
173 |
-
|
174 |
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
|
175 |
-
upsampler = RealESRGAN(
|
176 |
upsampler.load_weights(str(RRG_WEIGHTS))
|
177 |
UPSCALE_OK = True
|
178 |
except Exception as e:
|
179 |
print("Real-ESRGAN disabled →", e)
|
180 |
UPSCALE_OK = False
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
text_encoder=pipe.text_encoder,
|
186 |
-
truncate_long_prompts=False,
|
187 |
-
)
|
188 |
-
print("pipeline ready (CPU) ✔")
|
189 |
-
|
190 |
-
# ---------------------------------------------------------------------------
|
191 |
-
# 4. プロンプト定義
|
192 |
-
# ---------------------------------------------------------------------------
|
193 |
BASE_PROMPT = (
|
194 |
"Cinematic photo, (best quality:1.1), ultra-realistic, photorealistic of {subject}, "
|
195 |
"natural skin texture, bokeh, standing, front view, full body shot, thighs, "
|
@@ -204,35 +205,11 @@ NEG_PROMPT = (
|
|
204 |
"missing arms, missing legs, skin blemishes, acne, age spot"
|
205 |
)
|
206 |
|
207 |
-
# ---------------------------------------------------------------------------
|
208 |
-
# 5. 生成関数 (GPU 処理部)
|
209 |
-
# ---------------------------------------------------------------------------
|
210 |
-
GPU_INITIALISED = False # 一度だけ GPU へ移動するためのフラグ
|
211 |
-
|
212 |
@spaces.GPU(duration=60)
|
213 |
def generate(
|
214 |
face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
|
215 |
progress=gr.Progress(track_tqdm=True),
|
216 |
):
|
217 |
-
global GPU_INITIALISED, device, dtype, pipe, face_app, upsampler
|
218 |
-
|
219 |
-
if not GPU_INITIALISED:
|
220 |
-
print("\n--- first GPU initialisation ---")
|
221 |
-
device = "cuda"
|
222 |
-
dtype = torch.float16
|
223 |
-
|
224 |
-
pipe.to(device)
|
225 |
-
pipe.vae.to(device)
|
226 |
-
face_app.prepare(ctx_id=0, det_size=(640, 640))
|
227 |
-
if UPSCALE_OK:
|
228 |
-
try:
|
229 |
-
upsampler.model = upsampler.model.to(device) # RealESRGANer
|
230 |
-
upsampler.device = device # for newer API
|
231 |
-
except Exception:
|
232 |
-
pass
|
233 |
-
GPU_INITIALISED = True
|
234 |
-
print("GPU ready ✔")
|
235 |
-
|
236 |
if face_np is None or face_np.size == 0:
|
237 |
raise gr.Error("顔画像をアップロードしてください。")
|
238 |
|
@@ -244,7 +221,7 @@ def generate(
|
|
244 |
pipe.set_ip_adapter_scale(ip_scale)
|
245 |
img_in = Image.fromarray(face_np)
|
246 |
|
247 |
-
# compel
|
248 |
prompt_embeds, negative_prompt_embeds = compel_proc([prompt, neg])
|
249 |
prompt_embeds = prompt_embeds.unsqueeze(0)
|
250 |
negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0)
|
@@ -253,6 +230,8 @@ def generate(
|
|
253 |
prompt_embeds=prompt_embeds,
|
254 |
negative_prompt_embeds=negative_prompt_embeds,
|
255 |
ip_adapter_image=img_in,
|
|
|
|
|
256 |
num_inference_steps=int(steps) + 5,
|
257 |
guidance_scale=cfg,
|
258 |
width=int(w),
|
@@ -272,11 +251,11 @@ def generate(
|
|
272 |
)
|
273 |
return result
|
274 |
|
275 |
-
|
276 |
-
#
|
277 |
-
|
278 |
with gr.Blocks() as demo:
|
279 |
-
gr.Markdown("# InstantID – Beautiful Realistic Asians v7
|
280 |
with gr.Row():
|
281 |
with gr.Column():
|
282 |
face_in = gr.Image(label="顔写真", type="numpy")
|
@@ -302,3 +281,4 @@ with gr.Blocks() as demo:
|
|
302 |
)
|
303 |
|
304 |
print("launching …")
|
|
|
|
1 |
+
# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache)
|
2 |
+
"""Persistent-cache backend for InstantID portrait generation.
|
3 |
+
* 依存モデルは /data が書込可ならそこへ、それ以外は ~/.cache に保存
|
4 |
+
* wget を使った簡易リトライ DL
|
|
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
+
# --- ★ Monkey-Patch: torchvision 0.17+ で消えた functional_tensor を補完 ---
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import types, sys
|
8 |
from torchvision.transforms import functional as F
|
9 |
|
10 |
mod = types.ModuleType("torchvision.transforms.functional_tensor")
|
11 |
+
# 必要なのは rgb_to_grayscale だけなのでこれだけエイリアス
|
12 |
mod.rgb_to_grayscale = F.rgb_to_grayscale
|
13 |
sys.modules["torchvision.transforms.functional_tensor"] = mod
|
14 |
# ---------------------------------------------------------------------------
|
15 |
|
16 |
+
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
|
17 |
from pathlib import Path
|
18 |
from PIL import Image
|
19 |
from diffusers import (
|
20 |
+
StableDiffusionPipeline, ControlNetModel,
|
21 |
+
DPMSolverMultistepScheduler, AutoencoderKL,
|
|
|
|
|
22 |
)
|
23 |
from compel import Compel
|
24 |
from insightface.app import FaceAnalysis
|
25 |
|
26 |
+
##############################################################################
|
27 |
+
# 0. キャッシュ用ディレクトリ
|
28 |
+
##############################################################################
|
29 |
PERSIST_BASE = Path("/data")
|
30 |
CACHE_ROOT = (
|
31 |
PERSIST_BASE / "instantid_cache"
|
|
|
41 |
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
|
42 |
p.mkdir(parents=True, exist_ok=True)
|
43 |
|
|
|
44 |
def dl(url: str, dst: Path, attempts: int = 2):
|
45 |
"""wget + リトライの簡易ダウンローダ"""
|
46 |
if dst.exists():
|
|
|
51 |
return
|
52 |
raise RuntimeError(f"download failed → {url}")
|
53 |
|
54 |
+
##############################################################################
|
55 |
+
# 1. 必要アセットのダウンロード
|
56 |
+
##############################################################################
|
57 |
print("— asset check —")
|
58 |
|
59 |
+
# 1-A. ベース checkpoint
|
60 |
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
61 |
dl(
|
62 |
"https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
63 |
BASE_CKPT,
|
64 |
)
|
65 |
|
66 |
+
# 1-B. FaceID LoRA(Δのみ)
|
67 |
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
68 |
dl(
|
69 |
"https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors",
|
70 |
LORA_FILE,
|
71 |
)
|
72 |
|
73 |
+
# 1-C. textual inversion Embeddings
|
74 |
EMB_URLS = {
|
75 |
"ng_deepnegative_v1_75t.pt": [
|
76 |
"https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
|
|
|
98 |
if idx == len(urls): raise
|
99 |
print(" ↳ fallback URL …")
|
100 |
|
101 |
+
# 1-D. Real-ESRGAN weights (×8)
|
102 |
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
|
103 |
RRG_URLS = [
|
104 |
"https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
|
|
|
112 |
if idx == len(RRG_URLS): raise
|
113 |
print(" ↳ fallback URL …")
|
114 |
|
115 |
+
##############################################################################
|
116 |
+
# 2. ランタイム初期化
|
117 |
+
##############################################################################
|
118 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
119 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
120 |
+
print("device:", device, "| dtype:", dtype)
|
121 |
+
|
122 |
+
providers = (
|
123 |
+
["CUDAExecutionProvider", "CPUExecutionProvider"]
|
124 |
+
if torch.cuda.is_available()
|
125 |
+
else ["CPUExecutionProvider"]
|
126 |
+
)
|
127 |
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
128 |
+
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
|
129 |
|
130 |
+
# ControlNet + SD パイプライン
|
131 |
+
#controlnet = ControlNetModel.from_pretrained(
|
132 |
+
# "InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype
|
133 |
+
#)
|
134 |
pipe = StableDiffusionPipeline.from_single_file(
|
135 |
BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
|
136 |
)
|
137 |
pipe.vae = AutoencoderKL.from_pretrained(
|
138 |
"stabilityai/sd-vae-ft-mse", torch_dtype=dtype
|
139 |
+
).to(device)
|
140 |
+
#pipe.controlnet = controlnet
|
141 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
142 |
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
|
143 |
)
|
144 |
+
|
145 |
+
# --- ここが核心:画像エンコーダ込みで公式レポから直接ロード ------------------
|
146 |
pipe.load_ip_adapter(
|
147 |
+
"h94/IP-Adapter", # Hugging Face Hub ID
|
148 |
+
subfolder="models", # ip-adapter-plus-face_sd15.bin が入っているフォルダ
|
149 |
weight_name="ip-adapter-plus-face_sd15.bin",
|
150 |
)
|
151 |
+
# ---------------------------------------------------------------------------
|
152 |
+
|
153 |
+
# FaceID LoRA(差分 LoRA のみ)
|
154 |
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
155 |
pipe.set_ip_adapter_scale(0.65)
|
156 |
|
157 |
+
# textual inversion 読み込み
|
158 |
for emb in EMB_DIR.glob("*.*"):
|
159 |
try:
|
160 |
pipe.load_textual_inversion(emb, token=emb.stem)
|
161 |
print("emb loaded →", emb.stem)
|
162 |
except Exception:
|
163 |
print("emb skip →", emb.name)
|
164 |
+
pipe.to(device)
|
165 |
|
166 |
+
# compel プロセッサを初期化
|
167 |
+
compel_proc = Compel(
|
168 |
+
tokenizer=pipe.tokenizer,
|
169 |
+
text_encoder=pipe.text_encoder,
|
170 |
+
truncate_long_prompts=False # 長いプロンプトを切り捨てない
|
171 |
+
)
|
172 |
+
print("pipeline ready ✔")
|
173 |
+
|
174 |
+
##############################################################################
|
175 |
+
# 3. アップスケーラ
|
176 |
+
##############################################################################
|
177 |
try:
|
178 |
from basicsr.archs.rrdb_arch import RRDBNet
|
179 |
try:
|
180 |
from realesrgan import RealESRGAN
|
181 |
except ImportError:
|
182 |
from realesrgan import RealESRGANer as RealESRGAN
|
|
|
183 |
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
|
184 |
+
upsampler = RealESRGAN(device, rrdb, scale=8)
|
185 |
upsampler.load_weights(str(RRG_WEIGHTS))
|
186 |
UPSCALE_OK = True
|
187 |
except Exception as e:
|
188 |
print("Real-ESRGAN disabled →", e)
|
189 |
UPSCALE_OK = False
|
190 |
|
191 |
+
##############################################################################
|
192 |
+
# 4. プロンプト & 生成関数
|
193 |
+
##############################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
BASE_PROMPT = (
|
195 |
"Cinematic photo, (best quality:1.1), ultra-realistic, photorealistic of {subject}, "
|
196 |
"natural skin texture, bokeh, standing, front view, full body shot, thighs, "
|
|
|
205 |
"missing arms, missing legs, skin blemishes, acne, age spot"
|
206 |
)
|
207 |
|
|
|
|
|
|
|
|
|
|
|
208 |
@spaces.GPU(duration=60)
|
209 |
def generate(
|
210 |
face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
|
211 |
progress=gr.Progress(track_tqdm=True),
|
212 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
if face_np is None or face_np.size == 0:
|
214 |
raise gr.Error("顔画像をアップロードしてください。")
|
215 |
|
|
|
221 |
pipe.set_ip_adapter_scale(ip_scale)
|
222 |
img_in = Image.fromarray(face_np)
|
223 |
|
224 |
+
# compelで長さを揃え、.unsqueeze(0)でバッチ次元を追加する
|
225 |
prompt_embeds, negative_prompt_embeds = compel_proc([prompt, neg])
|
226 |
prompt_embeds = prompt_embeds.unsqueeze(0)
|
227 |
negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0)
|
|
|
230 |
prompt_embeds=prompt_embeds,
|
231 |
negative_prompt_embeds=negative_prompt_embeds,
|
232 |
ip_adapter_image=img_in,
|
233 |
+
#image=img_in,
|
234 |
+
#controlnet_conditioning_scale=0.9,
|
235 |
num_inference_steps=int(steps) + 5,
|
236 |
guidance_scale=cfg,
|
237 |
width=int(w),
|
|
|
251 |
)
|
252 |
return result
|
253 |
|
254 |
+
##############################################################################
|
255 |
+
# 5. Gradio UI
|
256 |
+
##############################################################################
|
257 |
with gr.Blocks() as demo:
|
258 |
+
gr.Markdown("# InstantID – Beautiful Realistic Asians v7")
|
259 |
with gr.Row():
|
260 |
with gr.Column():
|
261 |
face_in = gr.Image(label="顔写真", type="numpy")
|
|
|
281 |
)
|
282 |
|
283 |
print("launching …")
|
284 |
+
demo.queue().launch(show_error=True)
|