Spaces:
Sleeping
Sleeping
File size: 12,925 Bytes
2b967a2 2156cb6 3cbe3d7 2b967a2 e862b5c 2b967a2 7ea26eb 2b967a2 2c679cf 2b967a2 2c679cf 2b967a2 cf9bed9 0711e74 2b967a2 0711e74 2b967a2 0711e74 2b967a2 7ea26eb 1a70151 7ea26eb 1a70151 7ea26eb 212165d 7f0b8bd 1d9c94e e862b5c 7ea26eb d60a3ea 7ea26eb e862b5c 7ea26eb e862b5c a5d01c6 01c7d56 e862b5c 1d9c94e 8318c5d e862b5c eb3e2e9 e862b5c bde2597 373436e d60a3ea 7ea26eb d57007a 7ea26eb d19da1b 33fe410 7ea26eb d60a3ea d57007a 7ea26eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import sys
import json
import tempfile
import gradio as gr
import requests
import inspect
import pandas as pd
from typing import List, Dict, Any, Optional
import traceback
# vimport dotenv
# Load environment variables from .env file
# dotenv.load_dotenv()
# Import our agent
from agent import QAgent
from answer_data_manager import AnswerDataManager
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Simulation of GAIA benchmark questions
SAMPLE_QUESTIONS = [
{
"task_id": "task_002",
"question": "What is the square root of 144?",
"expected_answer": "12",
"has_file": False,
"file_content": None
}
]
SAMPLE_QUESTIONS_OUT = [
{
"task_id": "task_001",
"question": "What is the capital of France?",
"expected_answer": "Paris",
"has_file": False,
"file_content": None
},
{
"task_id": "task_003",
"question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?",
"expected_answer": "150 miles",
"has_file": False,
"file_content": None
},
{
"task_id": "task_004",
"question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW",
"expected_answer": "right",
"has_file": False,
"file_content": None
},
{
"task_id": "task_005",
"question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.",
"expected_answer": "$10,250.75",
"has_file": True,
"file_content": """Date,Product,Quantity,Price,Total
2023-01-05,Widget A,10,25.99,259.90
2023-01-12,Widget B,5,45.50,227.50
2023-01-15,Widget C,20,50.25,1005.00
2023-01-20,Widget A,15,25.99,389.85
2023-01-25,Widget B,8,45.50,364.00
2023-01-28,Widget D,100,80.04,8004.50"""
},
{
"task_id": "task_006",
"question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.",
"expected_answer": "Banana, Kiwi, Corn, Fig, Taro",
"has_file": False,
"file_content": None
},
{
"task_id": "task_007",
"question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?",
"expected_answer": "12",
"has_file": False,
"file_content": None
},
{
"task_id": "task_008",
"question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?",
"expected_answer": "Blue",
"has_file": False,
"file_content": None
}
]
def init_agent():
"""Initialize the QAgent."""
print("Initializing QAgent...")
try:
agent = QAgent()
return agent
except Exception as e:
print(f"Error instantiating agent for GAIA simulation: {e}")
return None
def save_test_file(task_id: str, content: str) -> str:
"""Save a test file to a temporary location."""
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv")
with open(file_path, 'w') as f:
f.write(content)
return file_path
def run_GAIA_questions_simu():
"""
Used only during development for test that simulate GAIA questions.
"""
# 1. Instantiate Agent
agent = init_agent()
results = []
correct_count = 0
total_count = len(SAMPLE_QUESTIONS)
for idx, question_data in enumerate(SAMPLE_QUESTIONS):
task_id = question_data["task_id"]
question = question_data["question"]
expected = question_data["expected_answer"]
print(f"\n{'='*80}")
print(f"Question {idx+1}/{total_count}: {question}")
print(f"Expected: {expected}")
# Process any attached file
# file_path = None
# if question_data["has_file"] and question_data["file_content"]:
# file_path = save_test_file(task_id, question_data["file_content"])
# print(f"Created test file: {file_path}")
# Get answer from agent
try:
answer = agent.invoke(question) # , file_path)
print(f"Agent answer: {answer}")
# Check if answer matches expected
is_correct = answer.lower() == expected.lower()
if is_correct:
correct_count += 1
print(f"✅ CORRECT")
else:
print(f"❌ INCORRECT - Expected: {expected}")
results.append({
"task_id": task_id,
"question": question,
"expected": expected,
"answer": answer,
"is_correct": is_correct
})
except Exception as e:
error_details = traceback.format_exc()
print(f"Error processing question: {e}\n{error_details}")
results.append({
"task_id": task_id,
"question": question,
"expected": expected,
"answer": f"ERROR: {str(e)}",
"is_correct": False
})
# Print summary
accuracy = (correct_count / total_count) * 100
print(f"\n{'='*80}")
print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)")
return results
def run_simuGAIA_all( profile: gr.OAuthProfile | None, submit: Optional[bool] = False):
"""
Fetches all questions, runs the QAgent on them,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL for submission ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate and init Agent ( modify this part to create your agent)
agent = init_agent()
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 2.5 Awaken the AnswerDataManager to get and store already answered questions
manager = AnswerDataManager("already_answered.json")
data = manager.load_data()
print(data.__str__)
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
submitted_answer = "NO ANSWER YET"
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
existing_answer = manager.get_answer_by_task_id(task_id)
if not existing_answer:
# then we call the agent
if question_text.startswith("What is the surname of the"): # ("Given this table"): # ("Who nominated the only"): # ("How many studio albums"): # (".rewsna eht sa"): <--- REMOVE THAT FOR ALL QUESTIONS
print(f"Precise question detected. INVOKING AGENT! Be careful!")
submitted_answer = agent.invoke(question_text)
# Save answer, task_id, and question_text to already_answered.json
# manager.add_answer(task_id, question_text, submitted_answer)
success = manager.add_answer(
task_id=task_id,
question=question_text,
submitted_answer=submitted_answer
)
if not success:
print("Error saving answer to archive.")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
else:
submitted_answer = "NO AGENT INVOKED"
else:
# then we get answer already found from archive
submitted_answer = existing_answer['submitted_answer']
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}' with url being {agent_code}..."
print(status_update)
print(f"Answers payload content: {answers_payload}")
# for answer in answers_payload:
# print("task_id: " + answer["Task ID"])
# print("answer: " + answer["Submitted Answer"])
if not submit:
return "Run finished. No submission done, as asked.", pd.DataFrame(results_log)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
|