File size: 13,286 Bytes
2b967a2
 
 
 
 
2156cb6
3cbe3d7
 
 
2b967a2
 
 
 
 
 
 
 
 
e862b5c
2b967a2
7ea26eb
 
 
 
2b967a2
 
 
2c679cf
 
 
2b967a2
 
 
 
 
 
2c679cf
 
 
 
2b967a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9bed9
0711e74
 
 
 
 
 
 
 
 
 
2b967a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0711e74
2b967a2
0711e74
2b967a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea26eb
 
61c5459
7ea26eb
 
 
 
 
1a70151
7ea26eb
 
 
 
 
 
 
 
 
 
1a70151
4232f41
7ea26eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212165d
7f0b8bd
1d9c94e
 
e862b5c
7ea26eb
 
 
d60a3ea
7ea26eb
 
 
 
e862b5c
7ea26eb
 
 
 
e862b5c
 
 
9e7da81
01c7d56
e862b5c
 
 
1d9c94e
8318c5d
 
 
 
 
 
 
e862b5c
 
 
 
eb3e2e9
e862b5c
 
 
 
bde2597
373436e
d60a3ea
7ea26eb
 
 
 
 
 
 
 
 
 
d57007a
7ea26eb
d19da1b
 
 
 
33fe410
7ea26eb
d60a3ea
d57007a
 
 
 
 
7ea26eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

import os
import sys
import json
import tempfile
import gradio as gr
import requests
import inspect
import pandas as pd
from typing import List, Dict, Any, Optional
import traceback
# vimport dotenv

# Load environment variables from .env file
# dotenv.load_dotenv()

# Import our agent
from agent import QAgent
from answer_data_manager import AnswerDataManager

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Simulation of GAIA benchmark questions
SAMPLE_QUESTIONS = [
    {
        "task_id": "task_002",
        "question": "What is the square root of 144?",
        "expected_answer": "12",
        "has_file": False,
        "file_content": None
    }
]

SAMPLE_QUESTIONS_OUT = [
        {
        "task_id": "task_001",
        "question": "What is the capital of France?",
        "expected_answer": "Paris",
        "has_file": False,
        "file_content": None
    },
    {
        "task_id": "task_003",
        "question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?",
        "expected_answer": "150 miles",
        "has_file": False,
        "file_content": None
    },
    {
        "task_id": "task_004", 
        "question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW",
        "expected_answer": "right",
        "has_file": False,
        "file_content": None
    },
    {
        "task_id": "task_005",
        "question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.",
        "expected_answer": "$10,250.75",
        "has_file": True,
        "file_content": """Date,Product,Quantity,Price,Total
2023-01-05,Widget A,10,25.99,259.90
2023-01-12,Widget B,5,45.50,227.50
2023-01-15,Widget C,20,50.25,1005.00
2023-01-20,Widget A,15,25.99,389.85
2023-01-25,Widget B,8,45.50,364.00
2023-01-28,Widget D,100,80.04,8004.50"""
    },
    {
        "task_id": "task_006",
        "question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.",
        "expected_answer": "Banana, Kiwi, Corn, Fig, Taro",
        "has_file": False,
        "file_content": None
    },
    {
        "task_id": "task_007",
        "question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?",
        "expected_answer": "12",
        "has_file": False,
        "file_content": None
    },
    {
        "task_id": "task_008",
        "question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?",
        "expected_answer": "Blue",
        "has_file": False,
        "file_content": None
    }
]


def init_agent():
    """Initialize the QAgent."""
    print("Initializing QAgent...")
    try:
        agent = QAgent()
        return agent
    except Exception as e:
        print(f"Error instantiating agent for GAIA simulation: {e}")
    return None


def save_test_file(task_id: str, content: str) -> str:
    """Save a test file to a temporary location."""
    temp_dir = tempfile.gettempdir()
    file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv")
    
    with open(file_path, 'w') as f:
        f.write(content)
    
    return file_path



def run_GAIA_questions_simu():
    """
    Used only during development for test that simulate GAIA questions.
    """
    # 1. Instantiate Agent
    agent = init_agent()

    
    results = []
    correct_count = 0
    total_count = len(SAMPLE_QUESTIONS)

    for idx, question_data in enumerate(SAMPLE_QUESTIONS):
        task_id = question_data["task_id"]
        question = question_data["question"]
        expected = question_data["expected_answer"]
        
        print(f"\n{'='*80}")
        print(f"Question {idx+1}/{total_count}: {question}")
        print(f"Expected: {expected}")
        
        # Process any attached file
        # file_path = None
        # if question_data["has_file"] and question_data["file_content"]:
        #     file_path = save_test_file(task_id, question_data["file_content"])
        #     print(f"Created test file: {file_path}")
        
        # Get answer from agent
        try:
            answer = agent.invoke(question) # , file_path)
            print(f"Agent answer: {answer}")
            
            # Check if answer matches expected
            is_correct = answer.lower() == expected.lower()
            if is_correct:
                correct_count += 1
                print(f"✅ CORRECT")
            else:
                print(f"❌ INCORRECT - Expected: {expected}")
            
            results.append({
                "task_id": task_id,
                "question": question,
                "expected": expected,
                "answer": answer,
                "is_correct": is_correct
            })
        except Exception as e:
            error_details = traceback.format_exc()
            print(f"Error processing question: {e}\n{error_details}")
            results.append({
                "task_id": task_id,
                "question": question,
                "expected": expected,
                "answer": f"ERROR: {str(e)}",
                "is_correct": False
            })
    
    # Print summary
    accuracy = (correct_count / total_count) * 100
    print(f"\n{'='*80}")
    print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)")
    
    return results



def run_simuGAIA_all( profile: gr.OAuthProfile | None, submit: Optional[bool] = True):
    """
    Fetches all questions, runs the QAgent on them,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL for submission ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    print("submit_url = " + submit_url + " with username = " + username)

    # 1. Instantiate and init Agent ( modify this part to create your agent)
    agent = init_agent()


    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 2.5 Awaken the AnswerDataManager to get and store already answered questions
    manager = AnswerDataManager("already_answered.json")
    data = manager.load_data()
    print(data.__str__)
    
    # 3. Run your Agent
    results_log = []
    answers_payload = []
    
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        submitted_answer = "NO ANSWER YET"
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            existing_answer = manager.get_answer_by_task_id(task_id)
            if not existing_answer:
                # then we call the agent
                if question_text.startswith("What si the first name of"): # **NOK**: ("Who are the pitchers"): # **NOK**:("What country had the least number"): # ("Where were the Vietnamese"): # ("On June 6, 2023, an article"): # ("How many at bats did the Yankee"): # ("Who did the actor who"): # ("m making a grocery list", 2): # ("What is the surname of the"): # ("Given this table"): # ("Who nominated the only"): # ("How many studio albums"): # (".rewsna eht sa"):   <---     REMOVE THAT FOR ALL QUESTIONS
                    print(f"Precise question detected. INVOKING AGENT! Be careful!")
                    submitted_answer = agent.invoke(question_text)
    
                    # Save answer, task_id, and question_text to already_answered.json
                    # manager.add_answer(task_id, question_text, submitted_answer)
                    success = manager.add_answer(
                        task_id=task_id, 
                        question=question_text, 
                        submitted_answer=submitted_answer
                    )
                    if not success:
                        print("Error saving answer to archive.")
                    
                    answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
                else:
                    submitted_answer = "NO AGENT INVOKED"
            else:
                # then we get answer already found from archive
                submitted_answer = existing_answer['submitted_answer']
                answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
                
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            
            
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}' with url being {agent_code}..."
    print(status_update)
    print(f"Answers payload content: {answers_payload}")
    # for answer in answers_payload:
    #     print("task_id: " + answer["Task ID"])
    #     print("answer: " + answer["Submitted Answer"])


    
    if not submit:
        return "Run finished. No submission done, as asked.", pd.DataFrame(results_log)

    
    
    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df