iQuentin's picture
some comments
c3d68f4 verified
raw
history blame
11.3 kB
import os
import sys
import json
import tempfile
import gradio as gr
import requests
import inspect
import pandas as pd
from typing import List, Dict, Any, Optional
import traceback
# vimport dotenv
# Load environment variables from .env file
# dotenv.load_dotenv()
# Import our agent
from agent import QAgent
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Simulation of GAIA benchmark questions
SAMPLE_QUESTIONS = [
{
"task_id": "task_002",
"question": "What is the square root of 144?",
"expected_answer": "12",
"has_file": False,
"file_content": None
}
]
SAMPLE_QUESTIONS_OUT = [
{
"task_id": "task_001",
"question": "What is the capital of France?",
"expected_answer": "Paris",
"has_file": False,
"file_content": None
},
{
"task_id": "task_003",
"question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?",
"expected_answer": "150 miles",
"has_file": False,
"file_content": None
},
{
"task_id": "task_004",
"question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW",
"expected_answer": "right",
"has_file": False,
"file_content": None
},
{
"task_id": "task_005",
"question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.",
"expected_answer": "$10,250.75",
"has_file": True,
"file_content": """Date,Product,Quantity,Price,Total
2023-01-05,Widget A,10,25.99,259.90
2023-01-12,Widget B,5,45.50,227.50
2023-01-15,Widget C,20,50.25,1005.00
2023-01-20,Widget A,15,25.99,389.85
2023-01-25,Widget B,8,45.50,364.00
2023-01-28,Widget D,100,80.04,8004.50"""
},
{
"task_id": "task_006",
"question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.",
"expected_answer": "Banana, Kiwi, Corn, Fig, Taro",
"has_file": False,
"file_content": None
},
{
"task_id": "task_007",
"question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?",
"expected_answer": "12",
"has_file": False,
"file_content": None
},
{
"task_id": "task_008",
"question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?",
"expected_answer": "Blue",
"has_file": False,
"file_content": None
}
]
def init_agent():
"""Initialize the QAgent."""
print("Initializing QAgent...")
try:
agent = QAgent()
return agent
except Exception as e:
print(f"Error instantiating agent for GAIA simulation: {e}")
return None
def save_test_file(task_id: str, content: str) -> str:
"""Save a test file to a temporary location."""
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv")
with open(file_path, 'w') as f:
f.write(content)
return file_path
def run_GAIA_questions_simu():
"""
Used only during development for test that simulate GAIA questions.
"""
# 1. Instantiate Agent
agent = init_agent()
results = []
correct_count = 0
total_count = len(SAMPLE_QUESTIONS)
for idx, question_data in enumerate(SAMPLE_QUESTIONS):
task_id = question_data["task_id"]
question = question_data["question"]
expected = question_data["expected_answer"]
print(f"\n{'='*80}")
print(f"Question {idx+1}/{total_count}: {question}")
print(f"Expected: {expected}")
# Process any attached file
# file_path = None
# if question_data["has_file"] and question_data["file_content"]:
# file_path = save_test_file(task_id, question_data["file_content"])
# print(f"Created test file: {file_path}")
# Get answer from agent
try:
answer = agent.invoke(question) # , file_path)
print(f"Agent answer: {answer}")
# Check if answer matches expected
is_correct = answer.lower() == expected.lower()
if is_correct:
correct_count += 1
print(f"✅ CORRECT")
else:
print(f"❌ INCORRECT - Expected: {expected}")
results.append({
"task_id": task_id,
"question": question,
"expected": expected,
"answer": answer,
"is_correct": is_correct
})
except Exception as e:
error_details = traceback.format_exc()
print(f"Error processing question: {e}\n{error_details}")
results.append({
"task_id": task_id,
"question": question,
"expected": expected,
"answer": f"ERROR: {str(e)}",
"is_correct": False
})
# Print summary
accuracy = (correct_count / total_count) * 100
print(f"\n{'='*80}")
print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)")
return results
def run_simuGAIA_all( profile: gr.OAuthProfile | None, submit: Optional[bool] = False):
"""
Fetches all questions, runs the QAgent on them,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL for submission ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate and init Agent ( modify this part to create your agent)
agent = init_agent()
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
if question_text.startswith("How many studio albums"): # <--- REMOVE THAT FOR ALL QUESTIONS
print(f"First question detected. INVOKING AGENT! Be careful!")
submitted_answer = agent.invoke(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
else:
submitted_answer = "NO AGENT INVOKED"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
if not submit:
return "Run finished. No submission done, as asked.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df