Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import json | |
import tempfile | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from typing import List, Dict, Any, Optional | |
import traceback | |
# vimport dotenv | |
# Load environment variables from .env file | |
# dotenv.load_dotenv() | |
# Import our agent | |
from agent import QAgent | |
from answer_data_manager import AnswerDataManager | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Simulation of GAIA benchmark questions | |
SAMPLE_QUESTIONS = [ | |
{ | |
"task_id": "task_002", | |
"question": "What is the square root of 144?", | |
"expected_answer": "12", | |
"has_file": False, | |
"file_content": None | |
} | |
] | |
SAMPLE_QUESTIONS_OUT = [ | |
{ | |
"task_id": "task_001", | |
"question": "What is the capital of France?", | |
"expected_answer": "Paris", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_003", | |
"question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?", | |
"expected_answer": "150 miles", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_004", | |
"question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW", | |
"expected_answer": "right", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_005", | |
"question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.", | |
"expected_answer": "$10,250.75", | |
"has_file": True, | |
"file_content": """Date,Product,Quantity,Price,Total | |
2023-01-05,Widget A,10,25.99,259.90 | |
2023-01-12,Widget B,5,45.50,227.50 | |
2023-01-15,Widget C,20,50.25,1005.00 | |
2023-01-20,Widget A,15,25.99,389.85 | |
2023-01-25,Widget B,8,45.50,364.00 | |
2023-01-28,Widget D,100,80.04,8004.50""" | |
}, | |
{ | |
"task_id": "task_006", | |
"question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.", | |
"expected_answer": "Banana, Kiwi, Corn, Fig, Taro", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_007", | |
"question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?", | |
"expected_answer": "12", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_008", | |
"question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?", | |
"expected_answer": "Blue", | |
"has_file": False, | |
"file_content": None | |
} | |
] | |
def init_agent(): | |
"""Initialize the QAgent.""" | |
print("Initializing QAgent...") | |
try: | |
agent = QAgent() | |
return agent | |
except Exception as e: | |
print(f"Error instantiating agent for GAIA simulation: {e}") | |
return None | |
def save_test_file(task_id: str, content: str) -> str: | |
"""Save a test file to a temporary location.""" | |
temp_dir = tempfile.gettempdir() | |
file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv") | |
with open(file_path, 'w') as f: | |
f.write(content) | |
return file_path | |
def run_GAIA_questions_simu(): | |
""" | |
Used only during development for test that simulate GAIA questions. | |
""" | |
# 1. Instantiate Agent | |
agent = init_agent() | |
results = [] | |
correct_count = 0 | |
total_count = len(SAMPLE_QUESTIONS) | |
for idx, question_data in enumerate(SAMPLE_QUESTIONS): | |
task_id = question_data["task_id"] | |
question = question_data["question"] | |
expected = question_data["expected_answer"] | |
print(f"\n{'='*80}") | |
print(f"Question {idx+1}/{total_count}: {question}") | |
print(f"Expected: {expected}") | |
# Process any attached file | |
# file_path = None | |
# if question_data["has_file"] and question_data["file_content"]: | |
# file_path = save_test_file(task_id, question_data["file_content"]) | |
# print(f"Created test file: {file_path}") | |
# Get answer from agent | |
try: | |
answer = agent.invoke(question) # , file_path) | |
print(f"Agent answer: {answer}") | |
# Check if answer matches expected | |
is_correct = answer.lower() == expected.lower() | |
if is_correct: | |
correct_count += 1 | |
print(f"✅ CORRECT") | |
else: | |
print(f"❌ INCORRECT - Expected: {expected}") | |
results.append({ | |
"task_id": task_id, | |
"question": question, | |
"expected": expected, | |
"answer": answer, | |
"is_correct": is_correct | |
}) | |
except Exception as e: | |
error_details = traceback.format_exc() | |
print(f"Error processing question: {e}\n{error_details}") | |
results.append({ | |
"task_id": task_id, | |
"question": question, | |
"expected": expected, | |
"answer": f"ERROR: {str(e)}", | |
"is_correct": False | |
}) | |
# Print summary | |
accuracy = (correct_count / total_count) * 100 | |
print(f"\n{'='*80}") | |
print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)") | |
return results | |
def run_simuGAIA_all( profile: gr.OAuthProfile | None, submit: Optional[bool] = False): | |
""" | |
Fetches all questions, runs the QAgent on them, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL for submission --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate and init Agent ( modify this part to create your agent) | |
agent = init_agent() | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 2.5 Awaken the AnswerDataManager to get and store already answered questions | |
manager = AnswerDataManager("already_answered.json") | |
data = manager.load_data() | |
print(data.__str__) | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
submitted_answer = "NO ANSWER YET" | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
existing_answer = manager.get_answer_by_task_id(task_id) | |
if not existing_answer: | |
# then we call the agent | |
if question_text.startswith(".rewsna eht sa"): # ("How many studio albums"): <--- REMOVE THAT FOR ALL QUESTIONS | |
print(f"First question detected. INVOKING AGENT! Be careful!") | |
submitted_answer = agent.invoke(question_text) | |
# Save answer, task_id, and question_text to already_answered.json | |
# manager.add_answer(task_id, question_text, submitted_answer) | |
success = manager.add_answer( | |
task_id=task_id, | |
question=question_text, | |
submitted_answer=submitted_answer | |
) | |
if not success: | |
print("Error saving answer to archive.") | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
else: | |
submitted_answer = "NO AGENT INVOKED" | |
else: | |
# then we get answer already found from archive | |
submitted_answer = existing_answer['submitted_answer'] | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
if not submit: | |
return "Run finished. No submission done, as asked.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |