Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""LiLT For Deployment
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1ol6RWyff15SF6ZJPf47X5380hBTEDiUH
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# ## Installing the dependencies (might take some time)
|
| 11 |
+
|
| 12 |
+
# !pip install -q pytesseract
|
| 13 |
+
# !sudo apt install -q tesseract-ocr
|
| 14 |
+
# !pip install -q transformers
|
| 15 |
+
# !pip install -q pytorch-lightning
|
| 16 |
+
# !pip install -q einops
|
| 17 |
+
# !pip install -q tqdm
|
| 18 |
+
# !pip install -q gradio
|
| 19 |
+
# !pip install -q Pillow==7.1.2
|
| 20 |
+
# !pip install -q wandb
|
| 21 |
+
# !pip install -q gdown
|
| 22 |
+
# !pip install -q torchmetrics
|
| 23 |
+
|
| 24 |
+
## Requirements.txt
|
| 25 |
+
import os
|
| 26 |
+
os.system('pip install pyyaml==5.1')
|
| 27 |
+
## install PyTesseract
|
| 28 |
+
os.system('pip install -q pytesseract')
|
| 29 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 30 |
+
|
| 31 |
+
import pandas as pd
|
| 32 |
+
import os
|
| 33 |
+
from PIL import Image
|
| 34 |
+
from transformers import RobertaTokenizer
|
| 35 |
+
import torch
|
| 36 |
+
from torch.utils.data import Dataset, DataLoader
|
| 37 |
+
import torch.nn as nn
|
| 38 |
+
import pytorch_lightning as pl
|
| 39 |
+
|
| 40 |
+
from dataset import create_features
|
| 41 |
+
from modeling import LiLT
|
| 42 |
+
from utils import LiLTPL
|
| 43 |
+
|
| 44 |
+
import gdown
|
| 45 |
+
import gradio as gr
|
| 46 |
+
|
| 47 |
+
seed = 42
|
| 48 |
+
|
| 49 |
+
## One can change this configuration and try out new combination
|
| 50 |
+
config = {
|
| 51 |
+
"hidden_dropout_prob": 0.1,
|
| 52 |
+
"hidden_size_t": 768,
|
| 53 |
+
"hidden_size" : 768,
|
| 54 |
+
"hidden_size_l": 768 // 6,
|
| 55 |
+
"intermediate_ff_size_factor": 4,
|
| 56 |
+
"max_2d_position_embeddings": 1001,
|
| 57 |
+
"max_seq_len_l": 512,
|
| 58 |
+
"max_seq_len_t" : 512,
|
| 59 |
+
"num_attention_heads": 12,
|
| 60 |
+
"num_hidden_layers": 12,
|
| 61 |
+
'dim_head' : 64,
|
| 62 |
+
"shape_size": 96,
|
| 63 |
+
"vocab_size": 50265,
|
| 64 |
+
"eps": 1e-12,
|
| 65 |
+
"fine_tune" : True
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
id2label = ['scientific_report',
|
| 69 |
+
'resume',
|
| 70 |
+
'memo',
|
| 71 |
+
'file_folder',
|
| 72 |
+
'specification',
|
| 73 |
+
'news_article',
|
| 74 |
+
'letter',
|
| 75 |
+
'form',
|
| 76 |
+
'budget',
|
| 77 |
+
'handwritten',
|
| 78 |
+
'email',
|
| 79 |
+
'invoice',
|
| 80 |
+
'presentation',
|
| 81 |
+
'scientific_publication',
|
| 82 |
+
'questionnaire',
|
| 83 |
+
'advertisement']
|
| 84 |
+
|
| 85 |
+
## Defining tokenizer
|
| 86 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
| 87 |
+
|
| 88 |
+
url = 'https://drive.google.com/uc?id=1eRV4fS_LFwI5MHqcRwLUNQZgewxI6Se_'
|
| 89 |
+
output = 'lilt_ckpt.ckpt'
|
| 90 |
+
gdown.download(url, output, quiet=False)
|
| 91 |
+
|
| 92 |
+
class RVLCDIPData(Dataset):
|
| 93 |
+
|
| 94 |
+
def __init__(self, image_list, label_list, tokenizer, max_len = 512, size = 1000):
|
| 95 |
+
|
| 96 |
+
self.image_list = image_list
|
| 97 |
+
self.label_list = label_list
|
| 98 |
+
self.tokenizer = tokenizer
|
| 99 |
+
self.max_seq_length = max_len
|
| 100 |
+
self.size = size
|
| 101 |
+
|
| 102 |
+
def __len__(self):
|
| 103 |
+
return len(self.image_list)
|
| 104 |
+
|
| 105 |
+
def __getitem__(self, idx):
|
| 106 |
+
img_path = self.image_list[idx]
|
| 107 |
+
label = self.label_list[idx]
|
| 108 |
+
|
| 109 |
+
boxes, words, normal_box = create_features(
|
| 110 |
+
img_path = img_path,
|
| 111 |
+
tokenizer = self.tokenizer,
|
| 112 |
+
max_seq_length = self.max_seq_length,
|
| 113 |
+
size = self.size,
|
| 114 |
+
use_ocr = True,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
final_encoding = {'input_boxes': boxes, 'input_words': words}
|
| 118 |
+
final_encoding['label'] = torch.as_tensor(label).long()
|
| 119 |
+
|
| 120 |
+
return final_encoding
|
| 121 |
+
|
| 122 |
+
lilt = LiLTPL(config)
|
| 123 |
+
# path_to_weights = 'drive/MyDrive/docformer_rvl_checkpoint/docformer_v1.ckpt'
|
| 124 |
+
lilt.load_from_checkpoint('lilt_ckpt.ckpt')
|
| 125 |
+
|
| 126 |
+
## Taken from LayoutLMV2 space
|
| 127 |
+
|
| 128 |
+
image = gr.inputs.Image(type="pil")
|
| 129 |
+
label = gr.outputs.Label(num_top_classes=5)
|
| 130 |
+
examples = [['00093726.png'], ['00866042.png']]
|
| 131 |
+
title = "Interactive demo: LiLT for Image Classification"
|
| 132 |
+
description = "Demo for classifying document images with LiLT model. To use it, \
|
| 133 |
+
simply upload an image or use the example images below and click 'submit' to let the model predict the 5 most probable Document classes. \
|
| 134 |
+
Results will show up in a few seconds."
|
| 135 |
+
|
| 136 |
+
def classify_image(image):
|
| 137 |
+
|
| 138 |
+
image.save('sample_img.png')
|
| 139 |
+
boxes, words, normal_box = create_features(
|
| 140 |
+
img_path = 'sample_img.png',
|
| 141 |
+
tokenizer = tokenizer,
|
| 142 |
+
max_seq_length = 512,
|
| 143 |
+
size = 1000,
|
| 144 |
+
use_ocr = True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
final_encoding = {'input_boxes': boxes.unsqueeze(0), 'input_words': words.unsqueeze(0)}
|
| 148 |
+
output = lilt.forward(final_encoding)
|
| 149 |
+
output = output[0].softmax(axis = -1)
|
| 150 |
+
|
| 151 |
+
final_pred = {}
|
| 152 |
+
for i, score in enumerate(output):
|
| 153 |
+
score = output[i]
|
| 154 |
+
final_pred[id2label[i]] = score.detach().cpu().tolist()
|
| 155 |
+
|
| 156 |
+
return final_pred
|
| 157 |
+
|
| 158 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|
| 159 |
+
|