Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import librosa
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import tempfile
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
|
| 8 |
+
# Cache the model to avoid reloading on every interaction
|
| 9 |
+
@lru_cache(maxsize=1)
|
| 10 |
+
def load_model():
|
| 11 |
+
return pipeline(
|
| 12 |
+
model='fixie-ai/ultravox-v0_5-llama-3_2-1b',
|
| 13 |
+
trust_remote_code=True,
|
| 14 |
+
device_map="auto" # Automatically uses GPU if available
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def process_audio(audio_file, user_message):
|
| 18 |
+
try:
|
| 19 |
+
# Load audio (supports file upload or microphone input)
|
| 20 |
+
if isinstance(audio_file, (str, tempfile._TemporaryFileWrapper)):
|
| 21 |
+
audio_path = audio_file.name if hasattr(audio_file, 'name') else audio_file
|
| 22 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
| 23 |
+
else: # Handle direct numpy array from microphone
|
| 24 |
+
sr, audio = audio_file
|
| 25 |
+
|
| 26 |
+
# Initialize conversation
|
| 27 |
+
turns = [
|
| 28 |
+
{
|
| 29 |
+
"role": "system",
|
| 30 |
+
"content": "You are a friendly and helpful AI assistant. Respond conversationally to the user's audio input."
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"role": "user",
|
| 34 |
+
"content": user_message if user_message else "Describe what you heard in the audio."
|
| 35 |
+
}
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
# Get model prediction
|
| 39 |
+
pipe = load_model()
|
| 40 |
+
result = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=100)
|
| 41 |
+
|
| 42 |
+
return result[-1]["content"]
|
| 43 |
+
|
| 44 |
+
except Exception as e:
|
| 45 |
+
return f"Error processing audio: {str(e)}"
|
| 46 |
+
|
| 47 |
+
# Gradio UI
|
| 48 |
+
with gr.Blocks(title="UltraVox Audio Assistant") as demo:
|
| 49 |
+
gr.Markdown("## 🎤 UltraVox Audio Assistant")
|
| 50 |
+
gr.Markdown("Upload an audio file or speak via microphone, then ask questions about it.")
|
| 51 |
+
|
| 52 |
+
with gr.Row():
|
| 53 |
+
audio_input = gr.Audio(
|
| 54 |
+
sources=["upload", "microphone"],
|
| 55 |
+
type="filepath",
|
| 56 |
+
label="Input Audio"
|
| 57 |
+
)
|
| 58 |
+
text_input = gr.Textbox(
|
| 59 |
+
label="Your Question (Optional)",
|
| 60 |
+
placeholder="Ask me about the audio..."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
submit_btn = gr.Button("Process")
|
| 64 |
+
output = gr.Textbox(label="AI Response", interactive=False)
|
| 65 |
+
|
| 66 |
+
submit_btn.click(
|
| 67 |
+
fn=process_audio,
|
| 68 |
+
inputs=[audio_input, text_input],
|
| 69 |
+
outputs=output
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
gr.Examples(
|
| 73 |
+
examples=[
|
| 74 |
+
["examples/weather_report.wav", "What's the weather forecast?"],
|
| 75 |
+
["examples/meeting_notes.mp3", "Summarize the key points"]
|
| 76 |
+
],
|
| 77 |
+
inputs=[audio_input, text_input]
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
demo.launch()
|