Spaces:
Build error
Build error
Commit
·
74fc255
1
Parent(s):
9035ca2
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import tensorflow as tf
|
|
9 |
import tensorflow_hub as hub
|
10 |
import io
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
-
import tempfile
|
13 |
import logging
|
14 |
|
15 |
# Configure logging
|
@@ -73,34 +73,44 @@ def save_dataframe_to_csv(df):
|
|
73 |
# Return the file path (no need to reopen the file with "rb" mode)
|
74 |
return temp_file_path
|
75 |
|
76 |
-
# Main function to perform image captioning and image-text matching
|
77 |
-
def process_images_and_statements(
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
# Save results_df to a CSV file
|
106 |
csv_results = save_dataframe_to_csv(results_df)
|
@@ -108,9 +118,8 @@ def process_images_and_statements(image, file_name):
|
|
108 |
# Return both the DataFrame and the CSV data for the Gradio interface
|
109 |
return results_df, csv_results
|
110 |
|
111 |
-
# Gradio interface with File input to receive
|
112 |
-
|
113 |
-
image_input = gr.inputs.Image(label="Upload Images", multiple=True)
|
114 |
output_df = gr.outputs.Dataframe(type="pandas", label="Results")
|
115 |
output_csv = gr.outputs.File(label="Download CSV")
|
116 |
|
@@ -123,4 +132,5 @@ iface = gr.Interface(
|
|
123 |
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
|
124 |
)
|
125 |
|
126 |
-
iface.launch()
|
|
|
|
9 |
import tensorflow_hub as hub
|
10 |
import io
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
import tempfile
|
13 |
import logging
|
14 |
|
15 |
# Configure logging
|
|
|
73 |
# Return the file path (no need to reopen the file with "rb" mode)
|
74 |
return temp_file_path
|
75 |
|
76 |
+
# Main function to perform image captioning and image-text matching for multiple images
|
77 |
+
def process_images_and_statements(files):
|
78 |
+
# Initialize an empty list to store the results for all images
|
79 |
+
all_results_list = []
|
80 |
+
|
81 |
+
# Loop through each uploaded file (image)
|
82 |
+
for file_name, image in files.items():
|
83 |
+
# Generate image caption for the uploaded image using git-large-r-textcaps
|
84 |
+
caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
|
85 |
+
|
86 |
+
# Loop through each predefined statement
|
87 |
+
for statement in statements:
|
88 |
+
# Compute textual similarity between caption and statement
|
89 |
+
textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
|
90 |
+
|
91 |
+
# Compute ITM score for the image-statement pair
|
92 |
+
itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
|
93 |
+
|
94 |
+
# Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
|
95 |
+
weight_textual_similarity = 0.5
|
96 |
+
weight_statement = 0.5
|
97 |
+
|
98 |
+
# Combine the two scores using a weighted average
|
99 |
+
final_score = ((weight_textual_similarity * textual_similarity_score) +
|
100 |
+
(weight_statement * itm_score_statement))
|
101 |
+
|
102 |
+
# Append the result to the all_results_list
|
103 |
+
all_results_list.append({
|
104 |
+
'Image File Name': file_name, # Include the image file name
|
105 |
+
'Statement': statement,
|
106 |
+
'Generated Caption': caption,
|
107 |
+
'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
|
108 |
+
'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
|
109 |
+
'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
|
110 |
+
})
|
111 |
+
|
112 |
+
# Convert the all_results_list to a DataFrame using pandas.concat
|
113 |
+
results_df = pd.concat([pd.DataFrame([result]) for result in all_results_list], ignore_index=True)
|
114 |
|
115 |
# Save results_df to a CSV file
|
116 |
csv_results = save_dataframe_to_csv(results_df)
|
|
|
118 |
# Return both the DataFrame and the CSV data for the Gradio interface
|
119 |
return results_df, csv_results
|
120 |
|
121 |
+
# Gradio interface with File input to receive multiple images and file names
|
122 |
+
image_input = gr.inputs.File(file_count="multiple", type="file", label="Upload Images")
|
|
|
123 |
output_df = gr.outputs.Dataframe(type="pandas", label="Results")
|
124 |
output_csv = gr.outputs.File(label="Download CSV")
|
125 |
|
|
|
132 |
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
|
133 |
)
|
134 |
|
135 |
+
iface.launch()
|
136 |
+
|