iamrobotbear commited on
Commit
893a3e5
·
1 Parent(s): 1e2e099

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -63
app.py CHANGED
@@ -1,77 +1,47 @@
1
  import gradio as gr
2
- import torch
3
- from PIL import Image
4
- import pandas as pd
5
- from lavis.models import load_model_and_preprocess
6
- from lavis.processors import load_processor
7
- from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
8
  import tensorflow as tf
9
  import tensorflow_hub as hub
10
- import io
11
- from sklearn.metrics.pairwise import cosine_similarity
12
- import tempfile
13
- import logging
14
-
15
- # Configure logging
16
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
17
-
18
- # Load model and preprocessors for Image-Text Matching (LAVIS)
19
- device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
20
- model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
21
-
22
- # Load tokenizer and model for Image Captioning (TextCaps)
23
- git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
24
- git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
25
-
26
- # Load Universal Sentence Encoder model for textual similarity calculation
27
- embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
28
-
29
- # Define a function to compute textual similarity between caption and statement
30
- def compute_textual_similarity(caption, statement):
31
- # Convert caption and statement into sentence embeddings
32
- caption_embedding = embed([caption])[0].numpy()
33
- statement_embedding = embed([statement])[0].numpy()
34
 
35
- # Calculate cosine similarity between sentence embeddings
36
- similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0]
37
- return similarity_score
 
 
 
38
 
39
  # Read statements from the external file 'statements.txt'
40
  with open('statements.txt', 'r') as file:
41
  statements = file.read().splitlines()
42
 
43
- # Function to compute ITM scores for the image-statement pair
44
- def compute_itm_score(image, statement):
45
- logging.info('Starting compute_itm_score')
46
- pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
47
- img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
48
- # Pass the statement text directly to model_itm
49
- itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm")
50
- itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
51
- score = itm_scores[:, 1].item()
52
- logging.info('Finished compute_itm_score')
53
- return score
54
-
55
  def generate_caption(processor, model, image):
56
- logging.info('Starting generate_caption')
57
- inputs = processor(images=image, return_tensors="pt").to(device)
58
- generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
59
- generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
60
- logging.info('Finished generate_caption')
61
- return generated_caption
62
 
63
- def save_dataframe_to_csv(df):
64
- csv_buffer = io.StringIO()
65
- df.to_csv(csv_buffer, index=False)
66
- csv_string = csv_buffer.getvalue()
 
 
67
 
68
- # Save the CSV string to a temporary file
69
- with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file:
70
- temp_file.write(csv_string)
71
- temp_file_path = temp_file.name # Get the file path
 
 
72
 
73
- # Return the file path (no need to reopen the file with "rb" mode)
74
- return temp_file_path
 
 
75
 
76
  # Main function to perform image captioning and image-text matching for multiple images
77
  def process_images_and_statements(files):
@@ -81,7 +51,10 @@ def process_images_and_statements(files):
81
  if isinstance(files, list):
82
  files = {f.name: f for f in files}
83
 
84
- for file_name, image in files.items():
 
 
 
85
  caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
86
  for statement in statements:
87
  textual_similarity_score = compute_textual_similarity(caption, statement) * 100
@@ -99,6 +72,7 @@ def process_images_and_statements(files):
99
  csv_results = save_dataframe_to_csv(results_df)
100
  return results_df, csv_results
101
 
 
102
  # Gradio interface with File input to receive multiple images and file names
103
  image_input = gr.inputs.File(file_count="multiple", type="file", label="Upload Images")
104
  output_df = gr.outputs.Dataframe(type="pandas", label="Results")
@@ -110,7 +84,8 @@ iface = gr.Interface(
110
  outputs=[output_df, output_csv],
111
  title="Image Captioning and Image-Text Matching",
112
  theme='sudeepshouche/minimalist',
113
- css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
 
114
  )
115
 
116
  iface.launch(debug=True)
 
1
  import gradio as gr
 
 
 
 
 
 
2
  import tensorflow as tf
3
  import tensorflow_hub as hub
4
+ import numpy as np
5
+ import pandas as pd
6
+ from transformers import GitProcessor, GitModel, GitConfig, ImageFeatureProcessor
7
+ from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ # Load models and processors
10
+ git_config = GitConfig.from_pretrained("microsoft/git-large-r")
11
+ git_processor_large_textcaps = GitProcessor.from_pretrained("microsoft/git-large-r")
12
+ git_model_large_textcaps = GitModel.from_pretrained("microsoft/git-large-r")
13
+ itm_model = hub.load("https://tfhub.dev/google/LaViT/1")
14
+ use_model = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")
15
 
16
  # Read statements from the external file 'statements.txt'
17
  with open('statements.txt', 'r') as file:
18
  statements = file.read().splitlines()
19
 
20
+ # Function to generate image caption
 
 
 
 
 
 
 
 
 
 
 
21
  def generate_caption(processor, model, image):
22
+ inputs = processor(images=image, return_tensors="pt")
23
+ outputs = model(**inputs)
24
+ caption = processor.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
25
+ return caption[0]
 
 
26
 
27
+ # Function to compute textual similarity
28
+ def compute_textual_similarity(caption, statement):
29
+ captions_embeddings = use_model([caption])[0].numpy()
30
+ statements_embeddings = use_model([statement])[0].numpy()
31
+ similarity_score = np.inner(captions_embeddings, statements_embeddings)
32
+ return similarity_score[0]
33
 
34
+ # Function to compute ITM score
35
+ def compute_itm_score(image, statement):
36
+ image_features = itm_model(image)
37
+ statement_features = use_model([statement])[0].numpy()
38
+ similarity_score = np.inner(image_features, statement_features)
39
+ return similarity_score[0][0]
40
 
41
+ # Function to save DataFrame to CSV
42
+ def save_dataframe_to_csv(df):
43
+ csv_data = df.to_csv(index=False)
44
+ return csv_data
45
 
46
  # Main function to perform image captioning and image-text matching for multiple images
47
  def process_images_and_statements(files):
 
51
  if isinstance(files, list):
52
  files = {f.name: f for f in files}
53
 
54
+ for file_name, image_file in files.items():
55
+ # Convert the image file to a PIL image
56
+ image = Image.open(image_file)
57
+
58
  caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
59
  for statement in statements:
60
  textual_similarity_score = compute_textual_similarity(caption, statement) * 100
 
72
  csv_results = save_dataframe_to_csv(results_df)
73
  return results_df, csv_results
74
 
75
+ # Gradio interface with File input to receive
76
  # Gradio interface with File input to receive multiple images and file names
77
  image_input = gr.inputs.File(file_count="multiple", type="file", label="Upload Images")
78
  output_df = gr.outputs.Dataframe(type="pandas", label="Results")
 
84
  outputs=[output_df, output_csv],
85
  title="Image Captioning and Image-Text Matching",
86
  theme='sudeepshouche/minimalist',
87
+ css=".output { flex-direction: column; } .output .outputs { width: 100%; }", # Custom CSS
88
+ capture_session=True, # Capture errors and exceptions in Gradio interface
89
  )
90
 
91
  iface.launch(debug=True)